

INTRODUCTION

TO PROGRAMMING

Prepared by:

Mahmoud El-Gayyar

Computer Science Department

Faculty of Computers and Informatics

Suez Canal University

2014

 i

Table of Contents

1 Introduction to Programming 6
1.1 Programming Skills 6
1.2 The Programming Model 7

1.2.1 Problem Analysis and Specification 8
1.2.2 Algorithm Development 8
1.2.3 Program Coding 9
1.2.4 Program Execution and Testing 9

1.3 Elements of Real Programming Languages 9
1.4 Characters, Strings, and Numbers 11
1.5 History of C 12
1.6 Higher Level Languages 12
1.7 Compiler Terminology 13
1.8 Exercises 14

2 Introduction to C Language 15
2.1 Your First C Program 15
2.2 Your Second C Program 17
2.3 Program Structure 20
2.4 Exercises 23

3 Basic Data Types and Operators 25
3.1 Types 25
3.2 Constants 26
3.3 Declarations 28

3.3.1 Variable Names 29
3.4 Operators 30

3.4.1 Arithmetic Operators 30
3.4.2 Assignment Operators 32

3.5 Function Calls 33
3.6 Exercises 34

4 Statements and Control Flow 36
4.1 Expression Statement 36
4.2 if Statements 37
4.3 Switch Statement 42
4.4 Boolean Expressions 44
4.5 While Loops 47
4.6 For Loops 49
4.7 Break and Continue 52
4.8 Exercises 54

5 More about Declarations and Operators 61
5.1 Arrays 61

5.1.1 Array Initialization 64
5.1.2 Arrays of Arrays (Multidimensional Arrays) 65

5.2 More Operators 67
5.2.1 Assignment Operators 68
5.2.2 Increment and Decrement Operators 69
5.2.3 Order of Evaluation 72

5.3 Exercises 76

 ii

6 Functions and Program Structure 80
6.1 Functions Basics 80

6.1.1 Function Prototypes 84
6.1.2 Function Philosophy 85

6.2 Void (Non Value-Returning) Functions 86
6.3 Variables Visibility and Lifetime 87

6.3.1 Default Initialization 91
6.3.2 Examples 91

6.4 Exercises 93

7 Basic Input and Output 96
7.1 “printf” Function 96
7.2 Character Input and Output 99

7.2.1 Reading Lines 102
7.2.2 Reading Numbers 105

7.3 Strings 106
7.4 Exercises 112

8 User Defined Types: Structures 116
8.1 Structures 116
8.2 Accessing Members of Structures 119
8.3 Operations on Structures 120

8.3.1 Nested Structures 121
8.3.2 Arrays of Structures 122

8.4 Define a Type New Name: typedef 122
8.5 Exercises 124

9 Pointers and Memory Allocation 125
9.1 Basic Pointer Operations 126

9.1.1 Pointers and Arrays: Pointer Arithmetic 131
9.1.2 Pointer Subtraction and Comparison 133
9.1.3 Null Pointers 134

9.2 Pointers and Passing Arguments 136
9.3 Memory Allocation 138

9.3.1 Allocating Memory with malloc 138
9.3.2 Freeing Memory 142
9.3.3 Reallocating Memory Blocks 143
9.3.4 Dynamic Memory Allocation in C++ 146
9.3.5 Pointer Safety 147

9.4 Exercises 148

APPENDIX I: Compilation of a C Program 152

References 158

 iii

List of Illustrations

Figure ‎1-1: Computer-based Problem Solving ... 8

Figure ‎1-2: C Compiler Terminology ... 14

Figure ‎2-1: The Structure of a C Program ... 21

Figure ‎3-1: Example of a Variable Storage ... 25

Figure ‎5-1: Multidimensional Arrray ... 66

Figure ‎10-1: Visual Studio New Project .. 154

Figure ‎10-2: Win32 Application Wizard ... 154

Figure ‎10-3: Win32 Application Settings .. 155

Figure ‎10-4: Add New Item Dialog Box .. 156

 Introduction to Programming iv

List of Tables

Table ‎3-1: Basic Data Types in C ... 26

Table ‎3-2: Character Escapes ... 28

Table ‎3-3: Arithmetic Operators .. 30

Table ‎4-1: Relational Operators .. 45

Table ‎4-2: Boolean Operators ... 46

Table ‎6-1: Variables Visibility and Lifetime ... 90

Table ‎7-1: Format Specifiers ... 97

 v

List of Listings

Listing 2-1: Hello World Program ... 16

Listing 2-2: Print few Numbers Program ... 18

Listing 4-1: Example of an if-else Statement ... 38

Listing 4-2: Example of a Nested If .. 39

Listing 4-3: Nested If-Else to Choose between Alternatives 41

Listing 4-4: Example of a Switch Statement .. 42

Listing 4-5: Example of a While Loop .. 48

Listing 4-6: Printing Prime Numbers between 1 and 100 52

Listing 5-1: Example of an Array Usage ... 64

Listing 6-1: Example of a User-defined Function .. 82

Listing 6-2: Example of Variables Visibility ... 92

Listing 7-1: A Program to Copy Input to Output .. 99

Listing 7-2: Function to Read One Line ... 102

Listing 9-1: Wrong Swap Program ..136

Listing 9-2: Correct Swap Program ... 137

Listing 9-3: Read Lines from a User .. 145

 Introduction to Programming 6

 Chapter 1

1 Introduction to Programming

Programming a computer simply means telling it what to do. There are

no other truly fundamental aspects of computer programming;

everything else we talk about will simply be the details of a particular

mechanism (usually a computer language) for telling a computer what to

do. The first hard thing about programming is to learn, become

comfortable with, and accept these mechanism, whether they make

“sense'' to you or not.

In this introduction we'll consider several things: programming skills, the

programming model, characters and strings, history of C, higher level

languages and compiler terminology.

1.1 Programming Skills

I'm not going to claim that programming is easy, but I am going to say

that it is not hard for the reasons people usually assume it is.

Programming is not a deeply theoretical subject like Chemistry or

Physics; programming does not require a special talent or skill.

Programming does, however, require care and craftsmanship. Some

things you do need are:

1. Attention to detail: In programming, the details matter.

Computers are incredibly stupid. You can't describe your

program 3/4 of the way and then say “You know what I mean?”

2. Stupidity: Computers are incredibly stupid. They do exactly

what you tell them to do: no more, no less. When you're

programming, it helps to be able to “think” as stupidly as the

computer does, so that you're in the right frame of mind for

specifying everything in minute detail, and not assuming that the

right thing will happen unless you tell it to.

Lenovo
Highlight

Lenovo
Highlight

Lenovo
Highlight

Lenovo
Highlight

Lenovo
Highlight

Lenovo
Highlight

Lenovo
Highlight

Lenovo
Highlight

Lenovo
Highlight

 Chapter 1: Introduction 7

3. Good memory: There are a lot of things to remember while

programming: the syntax of the language, the set of prewritten

functions that are available for you to call and what parameters

they take, what variables and functions you've defined in your

program and how you're using them, techniques you've used or

seen in the past which you can apply to new problems, bugs

you've had in the past which you can either try to avoid or at least

recognize by their symptoms. The more of these details you can

keep in your head at one time (as opposed to looking them up all

the time), the more successful you'll be at programming.

4. Ability to abstract, think on several levels: This is

probably the most important skill in programming. Computers

are some of the most complex systems we've ever built, and if

while programming you had to keep in mind every aspect of the

functioning of the computer at all levels; it would be an

impossible task to write even a simple program.

One of the most powerful techniques for managing the

complexity of a system is to divide (abstract) it into little “black

box” processes which perform useful tasks but which hide some

details so you don't have to think about them all the time. We

compartmentalize tasks all the time, without even thinking about

it. If I tell you to go to the store and pick up some milk, I don't

tell you to walk to the door, open the door, go outside, open the

car door, get in the car, drive to the store, get out of the car, walk

into the store, etc.

1.2 The Programming Model

A computer program consists of two parts: code and data. The code is the

set of instructions for performing a task, and the data is the set of

“memory locations'' which contain the intermediate results which are

used as the program performs its calculations.

Note that the code is relatively static while the data is dynamic. Once

you've gotten a program working, its code won't change, but every time

you run it, it will typically be working with different data, so the memory

locations will take on different values.

 Introduction to Programming 8

To write a program to ask the computer to solve a real world problem,

you need at least four steps:

1. Problem analysis and specification.

2. Algorithm development.

3. Program coding.

4. Program execution and testing.

1.2.1 Problem Analysis and Specification

Most problems that are to be solved with a computer usually break down

to an input component, a process component and an output

component. Because the initial description of a problem may be

somewhat vague and imprecise, the first step in the problem- solving

process is to review the problem carefully in order to determine its:

 Input: what information is given and which items are important in

solving the problem,

 Output: what information must be produced to determine that the

problem was solved,

 Process: identifies what actions must be performed on the input in

order to produce the output.

Figure ‎1-1: Computer-based Problem Solving

1.2.2 Algorithm Development

Once a problem has been specified, a procedure or process to produce the

required output from the given input must be designed. Since the

computer is a machine possessing no inherent problem-solving

Input Processing Output

 Chapter 1: Introduction 9

capabilities, this procedure must be formulated as a detailed sequence of

simple steps. Such a procedure is called an algorithm (pseudocode).

The steps that comprise an algorithm must be organized in a logical,

clear manner so that the program that implements this algorithm is

similarly well structured. Algorithms and programs are designed using

three basic methods of control:

 Sequential: Steps are performed in a strictly sequential manner,

each step being executed exactly once.

 Selection: One of several alternatives is selected and executed.

 Repetition: One or more steps performed repeatedly.

1.2.3 Program Coding

The third step in using the computer to solve a problem is to express the

algorithm in a programming language. In the second step, the algorithm

may be described in English or pseudocode, but the program that

implements that algorithm must be written in the vocabulary of a

programming language and must conform to the syntax of that language.

The major portion of this text is concerned with the vocabulary and

syntax of the programming languages C and C++.

1.2.4 Program Execution and Testing

The fourth step is to execute and test the program. This procedure should

be repeated for different possible expected inputs to ensure that the

program produces the expected outputs in all test cases. In case of a

failure, the program can be modified, and executed again for another test

run. This process continues until the program delivers the desired

results.

1.3 Elements of Real Programming Languages

Programs written in a computer programming language consists of a set

of several elements. If you understand these elements and what they're

for, not only will you understand C better, but you'll also find learning

other programming languages, and moving between different

programming languages, much easier.

1) There are variables, in which you can store the pieces of data

that a program is working on. Variables are the way we talk about

memory locations (data). Variables may be global (that is,

 Introduction to Programming 10

accessible anywhere in a program) or local (that is, private to

certain parts of a program).

2) There are expressions, which compute new values from old

ones.

3) There are assignments which store values (of expressions, or

other variables) into variables. In many languages, assignment is

indicated by an equals sign; thus, we might have:

Other programming languages may use other signs (like := or )

for assignment.

4) There are conditionals which can be used to determine whether

some condition is true, such as whether one number is greater

than another. (In some languages, including C, conditionals are

actually expressions [logical] which compare two values and

compute a “true”' or “false” value.)

5) Variables and expressions may have types, indicating the nature

of the expected values. For instance, you might declare that one

variable is expected to hold a number, and that another is

expected to hold a piece of text. In many languages (including C),

your declarations of the names of the variables you plan to use

and what types you expect them to hold must be explicit.

6) There are statements which contain instructions describing

what a program actually does. Statements may compute

expressions, perform assignments, or call functions (see below).

7) There are control flow constructs which determine what order

statements are performed in. A certain statement might be

performed only if a condition is true. A sequence of several

statements might be repeated over and over, until some condition

is met; this is called a loop.

8) An entire set of statements, declarations, and control flow

constructs can be lumped together into a function (also called

routine, subroutine, method, or procedure) which another piece

b=3 or c=d+e+1

Lenovo
Highlight

 Chapter 1: Introduction 11

of code can then call as a unit. When you call a function, you

transfer control to it and wait for it to do its job, after which it

returns to you; it may also return a value as a result of what it

has done. You may also pass values to the function on which it will

operate or which otherwise direct its work.

1.4 Characters, Strings, and Numbers

The earliest computers were number crunchers only, but almost all more

recent computers have the ability to manipulate alphanumeric data as

well. Programming languages tend to maintain a strict distinction

between numbers on the one hand and alphanumeric data on the other,

so we have to maintain that distinction in our own minds as well.

One fundamental component of a computer's handling of alphanumeric

data is its character set. A character set is the set of all the characters

that the computer can process and display. (Each character generally has

a key on the keyboard to enter it and a bitmap on the screen which

displays it.) A character set consists of letters, numbers, punctuation,

etc., but the point of this discussion is not so much what the characters

are but that we have to be careful to distinguish between characters,

strings, and numbers.

A character is, well, a single character. If we have a variable which

contains a character value, it might contain the letter 'A', or the digit '2',

or the symbol '&'.

A string is a set of zero or more characters. For example, the string “and”

consists of the characters 'a', 'n', and 'd'. The string “K2!” consists of the

characters 'K', '2', and '!'. The string “.” consists of the single character '.',

and the empty string “” consists of no characters at all.

The last two examples illustrate some important and perhaps surprising

or annoying distinctions. The character '4' and the string “4” are

conceptually different, and neither of them is quite the same as the

number 4. The string “123” consists of three characters, and it looks like

the number 123 to us, but as far as the computer is concerned it is just a

string. The number 123 is, when used for ordinary numeric purposes, not

represented internally as a string of three characters (instead, it is

typically represented as a 16- or 32-bit integer). When we have a string

which contains a numeric value which we wish to manipulate as a

number, we must typically ask for the string to be explicitly converted to

that number somehow. Similarly, we may have reason to convert a

number to a string of digits making up its decimal representation.

Lenovo
Highlight

 Introduction to Programming 12

1.5 History of C

Dennis Ritchie of Bell Labs created C in 1972. He and Ken Thompson

worked on designing the UNIX operating system. C came from

Thompson's B language. C was created as a tool for working systems

programmers that needed a more readable programming language than

assembler but still needed the low level access capabilities of an

assembler.

C has rapidly become one of the most important and popular

programming languages. Most of the UNIX operating system and MS-

DOS are written in C as are most compilers and other systems and

applications software.

1.6 Higher Level Languages

C is often called a middle-level computer language. Middle-level does not

mean C is less powerful, harder to use, or less developed than high level

languages such as BASIC or Pascal; nor is C similar to a low-level

language such as assembly language. C combines elements of a high-level

language with the functionalism of an assembler.

 High Level

o BASIC, FORTRAN, Pascal, Java

 Middle Level

o C, C++

 Low Level

o Assembler

C and C++ were first used for systems programming. Systems

programming refers to a class of programs that either are part of or work

closely with the operating system of the computer.

C and C++ are used for systems programming when:

 The program must run quickly; C and C++ programs run almost

as fast as ones in assembler.

 Chapter 1: Introduction 13

 C and C++ is a programmers language, it lacks restrictions and

easily manipulates bits, bytes, and memory addresses.

 A programmer needs direct control of I/O and memory

management functions that C and C++ gives.

1.7 Compiler Terminology

C is a compiled language. This means that the programs you write are

translated, by a special program called a compiler, into executable

machine-language programs which you can actually run. Executable

machine-language programs are self-contained that means that you don't

need copies of the source code (the original programming-language text

you composed) or the compiler in order to run them; you can distribute

copies of just the executable and that's all someone else needs to run it.

The main alternative to a compiled computer language is an

interpreted one, such as BASIC. An interpreted language is interpreted

(by a program called an interpreter) line by line and its actions

performed immediately. If you gave a copy of an interpreted program to

someone else, they would also need a copy of the interpreter to run it. No

standalone executable machine-language binary program is produced.

In other words, for each statement that you write, a compiler translates

into a sequence of machine language instructions which does the same

thing, while an interpreter simply perform.

When you're working with a compiled language, there are several

mechanical details which you'll want to be aware of. You create one or

more source files which are simple text files containing your program,

written in whatever language you're using. You typically use a text editor

to work with source files. You supply each source file (you may have one

or more than one) to the compiler, which creates an object file

containing machine-language instructions corresponding to your

program. Your program is not ready to run yet, however: if you called any

functions which you didn't write (such as the standard library functions

provided as part of a programming language environment), you must

arrange for them to be inserted into your program, too. The task of

combining object files together, while also locating and inserting any

library functions, is the job of the linker. The linker puts together the

object files you give it, noticing if you call any functions which you

haven't supplied and which must therefore be library functions. It then

searches one or more library files (a library file is simply a collection of

 Introduction to Programming 14

object files) looking for definitions of the still-unresolved functions, and

pulls in any that it finds. When it's done, it either builds the final,

executable file, or, if there were any errors (such as a function called

but not defined anywhere) complains.

Figure ‎1-2: C Compiler Terminology

1.8 Exercises

1. What are the basic skills a programmer should have?

2. Explain the program life cycle?

3. What are the different types of programming languages?

4. What is the difference between the compiler and the

interpreter?

5. Illustrate using a diagram the compiler terminology?

Source File

(.c, .cpp)

Source File

(.c, .cpp)

Compiler Object File

(.obj)

Object File

(.obj)

Linker

Executable

File (.exe)

Compiler

 Chapter 2: Introduction to C Language 15

 Chapter 2

2 Introduction to C Language

A programming language is a tool, and no tool can perform every task

unaided. So you have to put in your mind that C does not have built-in

features to perform every function that we might ever need to do while

programming. Some common tasks, such as manipulating strings,

allocating memory, and doing input/output (I/O), are performed by

calling on library functions (built-in). Other tasks which you might

want to do, such as creating or listing directories, or interacting with a

mouse, or displaying windows or other user-interface elements, or doing

color graphics, are not defined by the C language at all. You can do these

things from a C program, of course, but you will be calling on services

which are peculiar to your programming environment (compiler,

processor, and operating system) and which are not defined by the C

standard.

Another aspect of C that's worth mentioning here is that it is a bit

dangerous. C does not, in general, try hard to protect a programmer from

mistakes. If you write a piece of code which will do something wildly

different from what you intended it to do, up to and including deleting

your data or trashing your disk, and if it is possible for the compiler to

compile it, it generally will. You won't get warnings of the form “Do you

really mean to...?'' or “Are you sure you really want to...?''. C is often

compared to a sharp knife: it can do a surgically precise job on some

exacting task you have in mind, but it can also do a surgically precise job

of cutting off your finger. It's up to you to use it carefully. On the other

hand, this point can be considered as one of the advantages of C, as you

can use it to write low-level program or even computer viruses.

2.1 Your First C Program

The best way to learn programming is to dive right in and start writing

real programs. This way, concepts which would otherwise seem abstract

make sense, and the positive feedback you get from getting even a small

program to work gives you a great incentive to improve it or write the

next one.

 Introduction to Programming 16

You can't learn everything you'd need to write a complete program all at

once, so you'll have to take some things “on faith” and parrot them in

your first programs before you begin to understand them.

The first example program here is the first example program you will

meet while learning any computer language: print or display a simple

string, and exit. Here is our version of “hello, world” program:

Listing ‎2-1: Hello World Program

If you have a C compiler, the first thing to do is figure out how to type

this program in and compile it and run it and see where its output went.

In this course we are going to make use of Visual Studio 2010. To learn

how you can use it to compile and run your programs please refer to

Appendix I.

The first line is will appear in almost all programs we write. It asks that

some definitions having to do with the “Standard I/O Library” be

included in our program; these definitions are needed if we are to call the

library function printf correctly.

The second line says that we are defining a function named main. Most of

the time, we can name our functions anything we want, but the function

name main is special: it is the function that will be “called” first when our

program starts running (it the program’s main entry point). The

empty pair of parentheses indicates that our main function accepts no

arguments, that is, there isn't any information which needs to be passed

in when the function is called. A C and C++ program must have one and

only one function with the name of main that must be in lower case. The

main function should have a return type of either int or void, with int

being the preferred return type.

1. #include <stdio.h>

2. int main()
3. {

4. printf("Hello, world!\n");
5. return 0;

6. }

 Chapter 2: Introduction to C Language 17

The braces { and } surround a list of statements in C. Here in line 3 and

6, they surround the list of statements making up the function main.

The fourth line:

 printf("Hello, world!\n");

is the first statement in the program. It asks that the function printf be

called; printf is a library function which prints formatted output on the

computer screen. The parentheses surround printf's argument list: the

information which is handed to it which it should act on. The semicolon

(;) at the end of the line terminates the statement.

printf's first argument is the string which it should print. The string,

enclosed in double quotes “”, consists of the words “Hello, world!”

followed by a special sequence: \n. In strings, any two-character

sequence beginning with the backslash \ represents a single special

character. The sequence \n represents the “new line” character, which

ends one line of output and move down to the next.

The second statement in the main function is

 return 0;

In general, a function may return a value to its caller, and main is no

exception. When main returns (that is, reaches its end and stops

functioning), the program is at its end, and the return value from main

tells the operating system whether it succeeded or not. By convention, a

return value of 0 indicates success and -1 indicates a failure.

2.2 Your Second C Program

Our second example shown in Listing ‎2-2 is of little more practical use

than the first, but it introduces a few more programming language

elements.

 Introduction to Programming 18

Listing ‎2-2: Print few Numbers Program

As before, the line #include <stdio.h> is necessary since we're calling

the printf function, and main() and the pair of braces {} indicate and

delineate the function named main we're (again) writing.

The first new line is the second line:

/* print a few numbers, to illustrate a simple loop */

which is a comment (block comment). Anything between the

characters /* and */ is ignored by the compiler, but may be useful to a

person trying to read and understand the program. You can add

comments anywhere you want to in the program, to document what the

program is, what it does, who wrote it, how it works, what the various

functions are for and how they work, what the various variables are for,

etc. Another way of comment (inline comment) is shown in line 5 that

starts after the symbol // and ends with the end of the line.

The second new line is the fifth one:

int i;

which declares that our function will use a variable named i. a variable is

a location in the computer's memory that may hold any value. In this

case the variable type is int, which is a plain integer.

Next, we set up a loop:

1. #include <stdio.h>

2. /* print a few numbers, to illustrate a simple loop */

3. int main()
4. {
5. int i; // another way of comment

6. for(i = 0; i < 10; i = i + 1)

7. printf("i is %d\n", i);

8. return 0;
9. }

 Chapter 2: Introduction to C Language 19

 for(i = 0; i < 10; i = i + 1)

The keyword for indicates that we are setting up a “for loop”. A for

loop is controlled by three expressions, enclosed in parentheses and

separated by semicolons (;). These expressions say that, in this case,

the loop starts by setting i to 0, that it continues as long as i is less than

10, and that after each iteration of the loop, i should be incremented by 1

(that is, have 1 added to its value).

Finally, we have a call to the printf function, as before, but with several

differences. First, the call to printf is within the body of the for

loop. This means that control flow does not pass once through the

printf call, but instead that the call is performed as many times as are

dictated by the for loop. In this case, printf will be called several times:

once when i is 0, once when i is 1, once when i is 2, and so on until i is 9,

for a total of 10 times.

A second difference in the printf call is that the string to be printed, "i

is %d", contains a percent sign (%). Whenever printf sees a percent sign,

it indicates that printf is not supposed to print the exact text of the

string, but is instead supposed to read another one of its arguments to

decide what to print. The letter after the percent sign tells it what type of

argument to expect and how to print it. In this case, the letter d indicates

that printf is to expect an int (integer), and to print it in decimal.

Finally, we see that printf is in fact being called with another argument,

for a total of two, separated by commas (,). The second argument is the

variable i, which is in fact an int, as required by %d. The effect of all of

this is that each time it is called, printf will print a line containing the

current value of the variable i:

i is 0

i is 1

i is 2

...

After several trips through the loop, i will eventually equal 9. After that

trip through the loop, the third control expression i = i + 1 will

increment its value to 10. The condition i < 10 is no longer true, so no

more trips through the loop are taken. Instead, control flow jumps down

 Introduction to Programming 20

to the statement following the for loop, which is the return statement.

The main function returns, and the program is finished.

2.3 Program Structure

As observed from the last two examples, a program consists of one or

more functions (Our two example programs so far have contained one

function apiece). At the top of a source file are typically a few lines such

as #include <stdio.h>, followed by the definitions (i.e. code) for the

functions. (It's also possible to split up the several functions making up a

larger program into several source files, as we'll see later)

Each function is further composed of declarations and statements, in that

order. When a sequence of statements should act as one (for example,

when they should all serve together as the body of a loop) they can be

enclosed in braces (just as for the outer body of the entire function). The

simplest kind of statement is an expression statement, which is an

expression (presumably performing some useful operation) followed by a

semicolon. Expressions are further composed of operators, variables, and

constants.

C source code consists of several lexical elements. Some are words, such

as for, return, main, and i, which are either keywords of the language

(for, return) or identifiers (names) we've chosen for our own functions

and variables (main, i). There are constants such as 1 and 10 which

introduce new values into the program. There are operators such as =, +,

and >, which manipulate variables and values. There are other

punctuation characters (often called delimiters), such as parentheses and

squiggly braces {}, which indicate how the other elements of the program

are grouped. Finally, all of the preceding elements can be separated by

whitespace: spaces, tabs, and the “carriage returns” between lines.

 Chapter 2: Introduction to C Language 21

Figure ‎2-1: The Structure of a C Program

The source code for a C program is, for the most part, “free form”. This

means that the compiler does not care how the code is arranged: how it is

broken into lines, how the lines are indented, or whether whitespace is

used between things like variable names and other punctuation (Lines

like #include <stdio.h> are an exception; they must appear alone on

their own lines, generally unbroken. Only lines beginning with # are

affected by this rule). You can use whitespace, indentation, and

appropriate line breaks to make your programs more readable for

yourself and other people (highly recommended). You can place

explanatory comments anywhere in your program to make it much easier

to read.

To drive home the point that the compiler doesn't care about indentation,

line breaks, or other whitespace, here are a few (extreme) examples: The

fragments:

for(i = 0; i < 10; i = i + 1)

 printf("%d\n", i);

and

for(i = 0; i < 10; i = i + 1) printf("%d\n", i);

and

for(i=0;i<10;i=i+1) printf("%d\n",i);

 Introduction to Programming 22

and

 for(i = 0; i < 10; i = i + 1)

printf("%d\n", i);

and

for (i

= 0 ;

i < 10

; i =

i + 1

) printf (

"%d\n" , i

) ;

and

 for

 (i=0;

 i<10;i=

 i+1)printf

("%d\n", i);

are all treated exactly the same way by the compiler. Although C

compilers do not care about how a program looks, proper indentation

and spacing are critical in making programs easy for people to read.

 Chapter 2: Introduction to C Language 23

2.4 Exercises
1. The C and C++ languages is generally considered to be a

 a) high-level language

 b) mid-level language

 c) low-level language

 d) multiple-level language

2. Which function is the entry point of a C or C++ program?

 a) #include "stdio.o"

 b) printf()

 c) #include "stdio.h"

 d) main()

3. '\n' represents:

 a) a comment

 b) a rubout character

 c) a function

 d) an escape sequence

4. stdio.h stands for:

 a) standard input/output data handler

 b) standard task definition input/output

 c) standard input/output header file

 d) standard task definition in/out handler

5. Which of the following terms is related to a location in

the computer's memory that may assume any value?

 a) constant

 b) variable

 c) data type

 d) escape sequence

6. Approximately what is the line #include <stdio.h> at the

top of a C source file for?

7. What are some uses for comments?

8. Why is indentation important? How carefully does the

compiler pay attention to it?

9. What are the largest and smallest values that can be

reliably stored in a variable of type int?

10. What is the difference between the constants 7, '7',

and "7"?

11. What is the difference between the

constants 123 and "123"?

 Introduction to Programming 24

12. What is the function of the semicolon in a C statement?

13. Using Appendix I, get the “Hello, world!” program to

work on your computer.

14. What do these loops print?

for(i = 0; i < 10; i = i + 2)

 printf("%d\n", i);

for(i = 100; i >= 0; i = i - 7)

 printf("%d\n", i);

for(i = 1; i <= 10; i = i + 1)

 printf("%d\n", i);

for(i = 2; i < 100; i = i * 2)

 printf("%d\n", i);

15. Write a program to print the numbers from 1 to 10 and

their squares:

 1 1

 2 4

 3 9

 ...

 10 100

 Chapter 3: Basic Data Types and Operators 25

 Chapter 3

3 Basic Data Types and Operators

Before starting to program in C and C++, it is necessary to become

familiar with the rules concerning the declaration of variables, the types

of variables, the way those variables can be used to form expressions and

the way the values for those variables can be input and output.

In general, a variable is a location in the computer's memory (RAM) that

may hold a value according to its declared type. This concept is explained

in Figure ‎3-1.

Figure ‎3-1: Example of a Variable Storage

3.1 Types

There are only a few basic data types in C. The first ones we'll be

encountering and using are shown in Table ‎3-1.

The ranges listed in Table ‎3-1 for types int and long int are the

guaranteed minimum ranges. On some systems (32 or 64 bits

machines), these types may be able to hold larger values, but a program

that depends on extended ranges will not be as portable.

 Introduction to Programming 26

Table ‎3-1: Basic Data Types in C

Type No. Of bits Minmium Value Range

char 8 0-256

int 16/32 -32,767 to 32,767

long int 32/64 -2,147,483,647 to +2,147,483,647

float 32 a floating-point number

double 64 Double a floating-point number with more precision

You might wonder how the computer stores characters. The answer

involves a character set, which is simply a mapping between some set

of characters and some set of small numeric codes. Most machines today

use the ASCII character set, in which the letter A is represented by the

code 65, the ampersand & is represented by the code 38, the digit 1 is

represented by the code 49, the space character is represented by the

code 32, etc. (Most of the time, of course, you have no need to know or

even worry about these particular code values; they're automatically

translated into the right shapes on the screen or printer when characters

are printed out, and they're automatically generated when you type

characters on the keyboard.) Character codes are usually small--the

largest code value in ASCII is 126. Characters usually fit in a byte(8 bits).

Most of the simple variables in most programs are of types int, long int,

or double. Typically, we'll use int and double for most purposes and long

int any time we need to hold integer values greater than 32,767.

3.2 Constants

A constant is just an immediate, absolute value found in an expression.

The simplest constants are decimal integers, e.g. 0, 1, 2, 123. A constant

can be forced to be of type long int by suffixing it with the letter L (in

 Chapter 3: Basic Data Types and Operators 27

upper or lower case, although upper case is strongly recommended,

because a lower case l looks too much like the digit 1).

A constant that contains a decimal point or the letter e (or both) is a

floating-point constant: 3.14, 10., .01, 123e4, 123.456e7 . The e indicates

multiplication by a power of 10; 123.456e7 is 123.456 times 10 to the

power 7, or 1,234,560,000. (Floating-point constants are of type double

by default.)

We also have constants for specifying characters and strings. A character

constant is simply a single character between single quotes: 'A', '.', '%'. A

string is represented in C as a sequence or array of characters. A string

constant is a sequence of zero or more characters enclosed in double

quotes: "apple", "hello, world", "this is a test".

Within character and string constants, the backslash character \ is

special, and is used to represent characters not easily typed on the

keyboard or for various reasons not easily typed in constants. The most

common of these “character escapes” are shown in Table ‎3-2.

For example, ‚he said \‛hi\‛‛ is a string constant which contains two

double quotes, and \'' is a character constant consisting of a (single)

single quote. Notice once again that the character constant 'A' is very

different from the string constant "A".

C and C++ allow for the programmer to define constants that represent

decimal, string and character constants. The #define preprocessor

directive can be used to define constants that are to be used within a

program.

#define PI 3.14156

#define MYNAME "JOHN DOE"

#define LIMIT 10

 Introduction to Programming 28

Table ‎3-2: Character Escapes

\n a “newline” character

\b a backspace

\r a carriage return (without a line feed)

\' a single quote (e.g. in a character constant)

\t tab

\” a double quote (e.g. in a string constant)

\\ a single backslash

These constants can be very useful in case that you are using a certain

value several times (say 10 times) in the same program. In case that you

would like to change this value, you will need to change only its definition

(one line of code) rather than going through the program and changing

every occurrence of this value (in this case 10 lines of code).

3.3 Declarations

A variable is a place you can store a value. To be able to refer to it

unambiguously, a variable needs a name. You can think of the variables

in your program as a set of boxes, each with a label giving its name; you

might imagine that storing a value in a variable consists of writing the

value on a paper and placing it in the box.

A declaration tells the compiler the name and type of a variable you'll

be using in your program. In its simplest form, a declaration consists of

the type, the name of the variable, and a terminating semicolon:

 char c;

 int i;

 float f;

You can also declare several variables of the same type in one

declaration, separating them with commas:

Lenovo
Highlight

Lenovo
Highlight

 Chapter 3: Basic Data Types and Operators 29

 int i1, i2;

A declaration for a variable can also contain an initial value. This

initializer consists of an equal sign and an expression, which is usually a

single constant:

 int i = 1;

 int i1 = 10, i2 = 20;

3.3.1 Variable Names

Within limits, you can give your variables and functions any names you

want. These names (the formal term is “identifiers”) consist of letters,

numbers, and underscores. Theoretically, names can be as long as you

want, but extremely long ones get tedious to type after a while, and the

compiler is not required to keep track of extremely long ones perfectly.

(What this means is that if you were to name a variable, say,

supercalafragalisticespialidocious, the compiler might get lazy and

pretend that you'd named it supercalafragalisticespialidocio, such that if

you later misspelled it supercalafragalisticespialidociouz, the compiler

wouldn't catch your mistake. Nor would the compiler necessarily be able

to tell the difference if for some perverse reason you deliberately declared

a second variable named supercalafragalisticespialidociouz.)

The rules for forming a variable name also apply to function names. The

rules are:

 The first character must be a letter, either lowercase or

uppercase;

 The capitalization of names in C is significant (case-sensitive):

the variable names variable, Variable, and VARIABLE are all

distinct;

 defined constants are traditionally made up of all uppercase

characters

 the variable must be unique in the first eight characters in order

to be safe across compilers;

 make variable names descriptive;

Lenovo
Highlight

 Introduction to Programming 30

 do not make a variable name the same as a reserved word (the

words such as int and for which are part of the syntax of the

language).

3.4 Operators

Both C and C++ have a great many operators. In fact one of the criticisms

of the C language is that it has too many operators which make the

language difficult to read. The operators fall into several categories:

arithmetic, logical, relational, bitwise, assignment and miscellaneous. In

this section, we focus on arithmetic and assignment operators.

3.4.1 Arithmetic Operators

The basic operators for performing arithmetic are the same in many

computer languages:

Table ‎3-3: Arithmetic Operators

Arithmetic Operator Operands Function

- Unary Sign (negate a number)

% Binary Modulus (remainder)

/ Binary Division

* Binary Multiplication

- Binary Subtraction

+ Binary Addition

The - operator can be used in two ways: to subtract two numbers

(Binary) (as in a - b), or to negate one number (Unary) (as in -a + b or

a + -b).

When applied to integers, the division operator / discards any

remainder:

1 / 2  0

5 / 2  2

 Chapter 3: Basic Data Types and Operators 31

But when either operand is a floating-point quantity (type float or

double), the division operator yields a floating-point result: 1 / 2.0 is 0.5,

and 7.0 / 4.0 is 1.75.

1 / 2.0  0.5

5.0 / 2.0  2.5

The modulus operator % gives you the remainder when two integers are

divided (The modulus operator can only be applied to integers):

1 % 2  1

5 % 2  1

An additional arithmetic operation you might be wondering about is

exponentiation. Some languages have an exponentiation operator

(typically ^ or **), but C doesn't. (To square or cube a number, just

multiply it by itself)

For binary operators, multiplication, division, and modulus all have

higher precedence than addition and subtraction. The term “precedence”

refers to how “tightly” operators bind to their operands (that is, to the

things they operate on). In mathematics, multiplication has higher

precedence than addition:

 1 + 2 * 3  7, not 9

In other words,

 1 + 2 * 3 is equivalent to 1 + (2 * 3)

C is the same way.

All of these operators “group” from left to right, which means that when

two or more of them have the same precedence and participate next to

each other in an expression, the evaluation conceptually proceeds from

left to right.

1 - 2 - 3  (1 - 2) – 3  -4, not +2

 Introduction to Programming 32

Whenever the default precedence doesn't give you the grouping you

want, you can always use explicit parentheses. For example, if you

wanted to add 1 to 2 and then multiply the result by 3, you could write:

(1 + 2) * 3

3.4.2 Assignment Operators

The assignment operator = assigns a value to a variable. For example,
 x = 1

sets x to 1, and
 a = b

sets a to whatever b's value is. The expression

 i = i + 1

is the standard programming idiom for increasing a variable's value by 1:

this expression takes i's old value, adds 1 to it, and stores it back into i. (C

provides several “shortcut” operators for modifying variables in similar

ways, which we'll explain later.)

The assignment operator groups from right to left. Therefore,

 c = a = b

is equivalent to

 c = (a = b)

and assigns b's value to both a and c. It's usually a matter of style whether

you initialize a variable with an initializer in its declaration or with an

assignment expression near where you first use it. That is, there's no

particular difference between

 int a = 10;

and

 int a;

 /* later... */

 a = 10;

 Chapter 3: Basic Data Types and Operators 33

3.5 Function Calls
We'll have much more to say about functions in a later chapter, but for

now let's just look at how they're called. A function is a piece of code,

written by you or by someone else, which performs some useful task. You

call a function by mentioning its name followed by a pair of parentheses.

If the function takes any arguments, you place the arguments between

the parentheses, separated by commas. These are all function calls:

 printf("Hello, world!\n")

 printf("%d\n", i)

 sqrt(144)

 getchar()

The arguments to a function can be arbitrary expressions. Therefore, you

don't have to say things like:

 int sum = a + b + c;

 printf("sum = %d\n", sum);

if you don't want to; you can instead collapse it to

 printf("sum = %d\n", a + b + c);

Many functions return values, and when they do, you can embed calls to

these functions within larger expressions:

 c = sqrt(a * a + b * b)

 x = r * cos(theta)

The first expression squares a and b, computes the square root of the sum

of the squares, and assigns the result to c. (In other words, it computes a

* a + b * b, passes that number to the sqrt function, and assigns sqrt's

return value to c.)

The second expression passes the value of the variable theta to the cos

(cosine) function, multiplies the result by r, and assigns the result to x.

 Introduction to Programming 34

3.6 Exercises
1. The values placed within the parentheses of a

function are called:

 a) arguments

 b) statements

 c) escape sequence

 d) include statement

2. Which of the following terms describes data that
remains the same throughout a program?

 a) constant

 b) variable

 c) integer

 d) float

3. Which data type uses the most memory and provides
the more precision?

 a) float

 b) char

 c) int

 d) double

4. Which data type does not support fractional

values?

 a) float

 b) int

 c) long float

 d) double

5. Which data type requires only one byte of memory?

 a) char

 b) int

 c) float

 d) double

Lenovo
Highlight

 Chapter 3: Basic Data Types and Operators 35

6. Which of the following are valid variable names?

 a) sam

 b) SAM

 c) hi_cost

 d) 9%d4

 e) howdoyoudothis

7. List 5 rules for forming variables names?

8. What are the two different kinds of division that

the / operator can do? Under what circumstances

does it perform each?

9. Evaluate the following expressions if it is

possible:

a) 10 % 100

b) 6.0 / 2

c) 5 + 3 * 2

d) 7.0 + (1/2)

10. Which of the following is the correct order of

evaluation for the below expression?

 z = x + y * z / 4 % 2 - 1

a) / % + - =

b) = * / % + -
c) / * % - + =
d) * % / - + =

 Introduction to Programming 36

 Chapter 4

4 Statements and Control Flow

Statements are the “steps” of a program. Most statements compute and

assign values or call functions, but we will eventually meet several other

kinds of statements as well. By default, statements are executed in

sequence, one after another. We can, however, modify that sequence by

using control flow constructs which arrange that a statement or group

of statements is executed only if some condition is true or false, or

executed over and over again to form a loop.

The definitions of the terms statement and control flow are

somewhat circular. A statement is an element within a program which

you can apply control flow to; control flow is how you specify the order in

which the statements in your program are executed.

4.1 Expression Statement

Most of the statements in a C program are expression statements. An

expression statement is simply an expression followed by a semicolon.

The lines

 i = 0;

 i = i + 1;

and

 printf("Hello, world!\n");

are all expression statements. In C, the semicolon is a statement

terminator; all simple statements are followed by semicolons. The

semicolon is also used for a few other things in C; we've already seen that

it terminates declarations, too.

Expression statements do all of the real work in a C program. Whenever

you need to compute new values for variables, you'll typically use

 Chapter 4: Statements and Control Flow 37

expression statements. Whenever you want your program to do

something visible, in the real world, you'll typically call a function (as

part of an expression statement). We've already seen the most basic

example: calling the function printf to print text to the screen. But

anything else you might do--read or write a disk file, talk to a modem or

printer, draw pictures on the screen--will also involve function calls.

To be useful, an expression statement must do something; it must have

some lasting effect on the state of the program. (Formally, a useful

statement must have at least one side effect.) The first two sample

expression statements in this section (above) assign new values to the

variable i, and the third one calls printf to print something out, and these

are good examples of statements that do something useful. To make the

distinction clear, we may note that degenerate constructions such as

 0;

 i;

or

 i + 1;

are syntactically valid statements--they consist of an expression followed

by a semicolon--but in each case, they compute a value without doing

anything with it, so the computed value is discarded, and the statement is

useless.

4.2 if Statements

The simplest way to modify the control flow of a program is with an if

statement, which in its simplest form looks like this:

 if(x > max)

 max = x;

Even if you didn't know any C, it would probably be pretty obvious that

what happens here is that if x is greater than max, x gets assigned to max.

 Introduction to Programming 38

More generally, we can say that the syntax of an if statement is:

 if(expression)

 statement;

What if you have a series of statements, all of which should be executed

together or not at all depending on whether some condition is true? The

answer is that you enclose them in braces:

 if(expression)

 {

 statement;

 statement;

 statement;

 }

As a general rule, anywhere the syntax of C calls for a

statement, you may write a series of statements enclosed by

braces. (You do not need to, and should not, put a semicolon after the

closing brace, because the series of statements enclosed by braces is not

itself a simple expression statement)

An if statement may also optionally contain a second statement, the

“else clause” which is to be executed if the condition is not met (false).

An example is shown in Listing ‎4-1.

Listing ‎4-1: Example of an if-else Statement

Here in this example, statement 2 is executed if the condition is true,

and the block of statements 4 and 5 (following the keyword else) is

executed if the condition is false. In this example, we can compute a

1. if(n > 0)
2. average = sum / n;
3. else{
4. printf("can't compute average\n");
5. average = 0;
6. }

 Chapter 4: Statements and Control Flow 39

meaningful average only if n is greater than 0; otherwise, we print a

message saying that we cannot compute the average. The general syntax

of an if statement is therefore:

if(expression)

 statement; or block

 else

 statement; or block

(where block is a set statements enclosed in braces).

It's also possible to nest one if statement inside another. (For that

matter, it's in general possible to nest any kind of statement or control

flow construct within another.) For example, Listing ‎4-2 provides a little

piece of code that contains an if-else statement in which the statement

following the else is itself an if-else statement. If x is less than zero

then sign is set to -1, however if it is not less than zero the statement

following the else is executed. In that case if x is equal to zero then sign

is set to zero and otherwise it is set to 1.

Listing ‎4-2: Example of a Nested If

When you have one if statement (or loop) nested inside another, it's a

very good idea to use explicit braces {}, as shown, to make it clear (both

to you and to the compiler) how they're nested and which else goes with

which if. It's also a good idea to indent the various levels, also as shown,

to make the code more readable to humans.

1. if (x < 0)
2. sign = -1;
3. else{
4. if (x == 0)
5. sign = 0;
6. else
7. sign = 1;
8. }

 Introduction to Programming 40

Novice programmers often use a sequence of if statements rather than

use a nested if-else statement. That is they write the above in the

logically equivalent form:

if (x < 0)

 sign = -1;

if (x == 0)

 sign = 0;

if (x > 0)

 sign = 1;

This version is not recommended since it does not make it

clear that only one of the assignment statements will be

executed for a given value of x. Also it is inefficient since all three

conditions are always tested.

If nesting is carried out to too deep a level and indenting is not consistent

then deeply nested if or if-else statements can be confusing to read and

interpret. It is important to note that an else always belongs to the closest

if without an else.

Here is an example of another common arrangement of if-else

statements to choose between several alternatives. Suppose we have a

variable grade containing a student's numeric grade, and we want to

print out the corresponding letter grade. In Listing ‎4-3 you can find the

code that would do the job.

What happens here is that exactly one of the five printf calls is

executed, depending on which of the conditions is true. Each condition is

tested in turn, and if one is true, the corresponding statement is

executed, and the rest are skipped. If none of the conditions is true, we

fall through to the last one (line 9), printing “F”.

 Chapter 4: Statements and Control Flow 41

Listing ‎4-3: Nested If-Else to Choose between Alternatives

Another example of this arrangement, assume that a real variable x is

known to be greater than or equal to zero and less than one. The

following multiple choice decision increments count1 if 0 <= x < 0.25,

increments count2 if 0.25 <= x < 0.5, increments count3 if 0.5 <= x

<0.75 and increments count4 if 0.75 <= x <1.

if (x < 0.25)

 count1=count1+1;

else if (x < 0.5)

 count2=count2+1;

else if (x < 0.75)

 count3=count3+1;

else

 count4=count4+1;

Note how the ordering of the tests here has allowed the simplification of

the conditions. For example when checking that x lies between 0.25 and

0.50 the test x < 0.50 is only carried out if the test x < 0.25 has already

failed hence x is greater than 0.25. This shows that if x is less than 0.50

then x must be between 0.25 and 0.5. Compare the above with the

following clumsy version using more complex conditions:

if (x < 0.25)

 count1=count1+1;

else if (x >= 0.25 && x < 0.5)

1. if(grade >= 90)

2. printf("A");

3. else if(grade >= 80)

4. printf("B");

5. else if(grade >= 70)

6. printf("C");

7. else if(grade >= 60)

8. printf("D");

9. else printf("F");

 Introduction to Programming 42

 count2=count2+1;

else if (x >= 0.5 && x < 0.75)

 count3=count3+1;

else

 count4=count4+1;

4.3 Switch Statement

In the last section, it was shown how a choice could be made using nested

if-else statements. However a less unwieldy method in some cases is to

use a switch statement. For example the switch statement used in

Listing ‎4-4 sets the variable grade to the character A, B or C depending

on whether the variable i has the value 1, 2, or 3.

Listing ‎4-4: Example of a Switch Statement

The general form of a switch statement is:

 switch (selector){

 case label1: statement1;

 break;

 case label2: statement2;

 break;

 ...

 case labeln: statementn;

 break;

 default: statementd; // optional

 break;

 }

1. switch (i){

2. case 1 : grade = 'A';

3. break;

4. case 2 : grade = 'B';

5. break;

6. case 3 : grade = 'c';

7. break;

8. default : printf(‚%d is not in range‛,i);

9. break;

10. }

 Chapter 4: Statements and Control Flow 43

The selector may be an integer or character variable or an

expression that evaluates to an integer or a character. The selector

is evaluated and the value compared with each of the case labels. The

case labels must have the same type as the selector and they must all be

different. If a match is found between the selector and one of the case

labels, say labeli, then the statements from the statement statementi

until the next break statement will be executed. If the value of the

selector cannot be matched with any of the case labels then the statement

associated with default is executed. The default is optional but it should

only be left out if it is certain that the selector will always take the value

of one of the case labels. Note that the statement associated with a case

label can be a single statement or a sequence of statements (without

being enclosed in braces {}).

The following statement writes out the day of the week depending on the

value of an integer variable day. It assumes that day 1 is Sunday.

switch (day){

 case 1 : printf("Sunday");

 break;

 case 2 : printf("Monday");

 break;

 case 3 : printf("Tuesday");

 break;

 case 4 : printf("Wednesday");

 break;

 case 5 : printf("Thursday");

 break;

 case 6 : printf("Friday");

 break;

 case 7 : printf("Saturday");

 break;

 default : printf("Not an allowable day number");

 break;

 }

If it has already been ensured that day takes a value between 1 and 7 then
the default case may be missed out.

 Introduction to Programming 44

It is allowable to associate several case labels with one statement. For

example if the above example is amended to write out whether day is a

weekday or is part of the weekend:

switch (day){

 case 1 :

 case 7 : printf("This is a weekend day");

 break;

 case 2 :

 case 3 :

 case 4 :

 case 5 :

 case 6 : printf("This is a weekday");

 break;

 default : printf("Not a legal day");

 break;

 }

4.4 Boolean Expressions

An if statement like

if(x > max)

 max = x;

is perhaps deceptively simple. Conceptually, we say that it checks

whether the condition x > max is “true” or “false”. Therefore, we need

to understand how true and false values are represented, and how they

are interpreted by statements like if.

In C/C++, a true/false1 condition can be represented as an integer. In C,

false is represented by a value of 0 (zero), and true is represented by any

non-zero value. Since there are many non-zero values, when we have to

pick a specific value for “true”' we'll pick 1 (one).

The relational operators such as <, <=, >, and >= are in fact

operators, just like +, -, *, and /. The relational operators take two values,

1 mathematics involving only two values is called Boolean Algebra after George Boole, a
mathematician who refined this study.

 Chapter 4: Statements and Control Flow 45

look at them, and return a value of 1 or 0 depending on whether the

tested relation was true or false. The complete set of relational operators

in C is presented in Table ‎4-1.

Table ‎4-1: Relational Operators

Relational Operator Function

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

== Equal

!= Not equal

For example, 1 < 2 is 1, 3 > 4 is 0, 5 == 5 is 1, and 6 != 6 is 0.

We've now encountered perhaps the most common error in C:

the equality-testing operator is ==, not a single =, which is

assignment. If you accidentally write:

 if(a = 0)

(and you probably will at some point; everybody makes this mistake), it

will not test whether a is zero, as you probably intended. Instead, it will

assign zero to a, and then check the “true” branch of the if statement

(if a is a non-zero). But a will have just been assigned the value 0, so the

“true” branch will never be taken! (This could drive you crazy while

debugging--you wanted to do something if a was 0, and after the test, a is

0, whether it was supposed to be or not, but the “true” branch is

nevertheless not taken.)

To avoid this problem, always start your relational expression with

the number:

if(0 = a)

 Introduction to Programming 46

In case that you wrote a single equal, the compiler will through an error

as an assignment expression can’t start with a number.

The relational operators work with arbitrary numbers and generate

true/false values. You can also combine true/false values by using the

Boolean operators, which take true/false values as operands and

compute new true/false values. The three Boolean operators are shown

in Table ‎4-2.

Table ‎4-2: Boolean Operators

Boolean Operator Function

&& Logical AND

|| Logical OR

! Logical NOT (Unary operator;

takes one operand)

The && (‚AND‛) operator takes two true/false values and produces a true

(1) result if both operands are true (that is, if the left-hand side is true

and the right-hand side is true). The || (‚OR‛) operator takes two

true/false values and produces a true (1) result if either operand is true.

The ! (‚NOT‛) operator takes a single true/false value and negates it,

turning false to true and true to false (0 to 1 and nonzero to 0).

For example, to test whether the variable i lies between 1 and 10, you

might use

if(1 < i && i < 10)

 ...

Here we're expressing the relation “i is between 1 and 10”. It's important

to understand why the more obvious expression:

if(1 < i < 10) /* WRONG */

would not work. The expression 1 < i < 10 is parsed by the

compiler analogously to 1 + i + 10. The expression 1 + i +

10 is parsed as (1 + i) + 10 and means “add 1 to i, and then add the result

 Chapter 4: Statements and Control Flow 47

to 10”. Similarly, the expression 1 < i < 10 is parsed as (1 < i) < 10

and means “see if 1 is less than i, and then see if the result is less than

10”. But in this case, “the result” is 1 or 0, depending on whether i is

greater than 1. Since both 0 and 1 are less than 10, the expression 1 < i <

10 would always be true in C, regardless of the value of i!

As far as C is concerned, the controlling expression (of conditional

statements like if) can in fact be any expression: it doesn't have to “look

like” a Boolean expression; it doesn't have to contain relational or logical

operators. C just looks at is whether the expression evaluates to 0 or non-

zero. For example, if you have a variable x, and you want to do

something if x is non-zero, it's possible to write:

if(x)

 statement

and the statement will be executed if x is non-zero (since non-zero means

“true”).

4.5 While Loops

Loops generally consist of two parts: one or more control

expressions that control the execution of the loop, and the

body, which is the statement or set of statements which is executed over

and over.

The most basic loop in C is the while loop. A while loop has one control

expression, and executes as long as that expression is true. Example in

Listing ‎4-5 repeatedly doubles the number 2 (2, 4, 8, 16, ...) and prints

the resulting numbers as long as they are less than 1000. As we can see in

the example, we have used braces {} to enclose the group of statements

which are to be executed together as the body of the loop.

The general syntax of a while loop is

 while(expression)

 statement

 Introduction to Programming 48

 Listing ‎4-5: Example of a While Loop

A while loop starts out like an if statement; if the condition expressed by

the expression is true, the statement is executed. However, after

executing the statement, the condition is tested again, and if it's still true,

the statement is executed again. (Presumably, the condition

depends on some value which is changed in the body of the

loop.) As long as the condition remains true, the body of the loop is

executed over and over again. If the condition is false right at the start,

the body of the loop is never executed.

As another example, if you want to print a number of blank lines, with

the variable n holding the number of blank lines to be printed, you might

use code like this:

while(n > 0){

 printf("\n");

 n = n - 1;

}

After the loop finishes, n will have the value 0.

You use a while loop when you have a statement or group of statements

which may have to be executed a number of times to complete their task.

The controlling expression represents the condition. There's more work

to do as long as the expression is true, the body of the loop is executed;

presumably, it makes at least some progress at its task. When the

expression becomes false, the task is done, and the rest of the program

(beyond the loop) can proceed. When we think about a loop in this way,

we can see an additional important property: if the expression evaluates

to false before the very first trip through the loop, we make zero trips

through the loop. In other words, if the task is already done (if there's no

1. int x = 2;

2. while(x < 1000){

3. printf("%d\n", x);

4. x = x * 2; //very important

5. }

 Chapter 4: Statements and Control Flow 49

work to do) the body of the loop is not executed at all. It's always a good

idea to think about the “boundary conditions” in a piece of code, and

to make sure that the code will work correctly when there is no work to

do, or when there is a trivial task to do, such as sorting an array of one

number. Experience has shown that bugs at boundary conditions are

quite common.

4.6 For Loops

Our second loop, which we've seen at least one example of already, is the

for loop. The first one we saw was:

 for (i = 0; i < 10; i = i + 1)

 printf("i is %d\n", i);

More generally, the syntax of a for loop is

 for(expr1; expr2 ; expr3)

 statement

Here we see that the for loop has three control expressions. As always,

the statement can be a brace-enclosed block.

Many loops are set up to cause some variable to step through a range of

values, or, more generally, to set up an initial condition and then modify

some value to perform each succeeding loop as long as some condition is

true. The three expressions in a for loop encapsulate these conditions:

expr1 sets up the initial condition, expr2 tests whether another trip

through the loop should be taken, and expr3 increments or updates

things after each trip through the loop and prior to the next one. In our

first example, we had i = 0 as expr1, i < 10 as expr2, i = i + 1 as expr3,

and the call to printf as the body statement of the loop. So the loop

began by setting i to 0, proceeded as long as i was less than 10, printed

out i's value during each trip through the loop, and added 1 to i between

each trip through the loop.

When the compiler sees a for loop, first, expr1 is executed. Then, expr2 is

evaluated, and if it is true, the body of the loop (statement) is executed.

Then, expr3 is executed to go to the next step, and expr2 is evaluated

again, to see if there is a next step. During the execution of a for loop, the

sequence is:

 Introduction to Programming 50

expr1

expr2

statement

expr3

expr2

statement

expr3

...

expr2

statement

expr3

expr2

The first thing executed is expr1. expr3 is executed after every trip

through the loop. The last thing executed is always expr2, because when

expr2 evaluates false, the loop exits.

All three expressions of a for loop are optional. If you leave out expr1,

there is simply no initialization step, and the variable(s) used with the

loop had better have been initialized already. If you leave out expr2, there

is no test, and the default for the for loop is that another trip through the

loop should be taken (such that unless you break out of it some other

way, the loop runs forever). If you leave out expr3, there is no increment

step.

The semicolons separate the three controlling expressions of a for loop.

If you leave out one or more of the expressions, the semicolons remain.

Therefore, one way of writing a deliberately infinite loop in C is

 for(;;)

 ...

It's also worth noting that a for loop can be used in more general ways

than the simple, iterative examples we've seen so far. The “control

variable” of a for loop does not have to be an integer, and it does not

have to be incremented by an additive increment. It could be

 Chapter 4: Statements and Control Flow 51

“incremented” by a multiplicative factor (1, 2, 4, 8, ...) if that was what

you needed, or it could be a floating-point variable, or it could be another

type of variable which we haven't met yet which would step, not over

numeric values, but over the elements of an array or other data structure.

The powers-of-two example of the previous section does fit this pattern,

so we could rewrite it like this:

 int x;

 for(x = 2; x < 1000; x = x * 2)

 printf("%d\n", x);

There is no earth-shaking or fundamental difference between the while

and for loops. In fact, given the general for loop

for(expr1; expr2 ; expr3)

 statement

you could usually rewrite it as a while loop, moving the initialize and

increment expressions to statements before and within the loop:

 expr1;

 while(expr2){

 statement

 expr3 ;

 }

An important contrast between the for and while loops is that although

the test expression (expr2) is optional in a for loop, it is required in a

while loop. If you leave out the controlling expression of a while loop, the

compiler will complain about a syntax error. To write a deliberately

infinite while loop, you have to supply an expression which is always

non-zero. The most obvious one would simply be while(1) .

If it's possible to rewrite a for loop as a while loop and vice versa, why do

they both exist? Which one should you choose? In general, when you

choose a for loop, its three expressions should all manipulate the same

variable or data structure, using the initialize, test, increment pattern. If

they don't manipulate the same variable or don't follow that pattern,

 Introduction to Programming 52

wedging them into a for loop buys nothing and a while loop would

probably be clearer. The reason that one loop or the other can be clearer

is simply that, when you see a for loop, you expect to see an idiomatic

initialize/test/increment of a single variable, and if the for loop you're

looking at doesn't end up matching that pattern, you've been

momentarily misled.

4.7 Break and Continue

Sometimes, due to an exceptional condition, you need to jump out of a

loop early, that is, before the main controlling expression of the loop

causes it to terminate normally. Other times, in an elaborate loop, you

may want to jump back to the top of the loop (to test the controlling

expression again, and perhaps begin a new trip through the loop) without

playing out all the steps of the current loop. The break and continue

statements allow you to do these two goals.

To put everything we've seen in this chapter together, as well as

demonstrate the use of the break statement,

Listing ‎4-6 shows a program for printing prime numbers between 1 and

100.

The outer loop steps the variable i through the numbers from 3 to 100;

the code tests to see if each number has any divisors other than 1 and

itself. The trial divisor j loops from 2 up to i. j is a divisor of i if the

remainder of i divided by j is 0, so the code uses C's “remainder” or

“modulus” operator % to make this test.

If the program finds a divisor, it uses break to break out of the inner loop,

without printing anything. But if it notices that j has risen higher than

the square root of i, without its having found any divisors, then i must

not have any divisors, so i is prime, and its value is printed. (Once we've

determined that i is prime by noticing that j > sqrt(i), there's no need

to try the other trial divisors, so we use a second break statement to break

out of the loop in that case, too.)

Listing ‎4-6: Printing Prime Numbers between 1 and 100

 Chapter 4: Statements and Control Flow 53

The simple algorithm and implementation we used here does not work

for 2, the only even prime number, so the program “cheats” and prints

out 2 no matter what, before going on to test the numbers from 3 to 100.

Many improvements to this simple program are of course possible;

you might experiment with it. Did you notice that the “test”

expression of the inner loop for(j = 2; j < i; j = j + 1) is in a sense

unnecessary, because the loop always terminates early due to one of the

two break statements?

We end up this chapter with a simple example of a continue statement.

In this example we print the numbers from 1 to 5 and skip number 3

using the continue statement.

for (j = 1; j <= 5; j=j+1) {

 if (j == 3) {

 printf("continue!");

 continue;

 }

 printf(‚%d\n‛,j);

1. #include <stdio.h>

2. #include <math.h>

3. int main(){

4. int i, j;

5. printf("%d\n", 2);

6. for(i = 3; i <= 100; i = i + 1){

7. for(j = 2; j < i; j = j + 1){

8. if(i % j == 0)

9. break;

10. if(j > sqrt(i)){

11. printf("%d\n", i);

12. break;

13. }

14. }

15. }

16. return 0;

17. }

 Introduction to Programming 54

 }

The output of this program should be as follows:
1

2

Continue!

4

5

4.8 Exercises
1. What value is returned by the following code fragment?

 int i = 7;

 y = y+i;

 if(i < 8)

 printf("The value is less than eight.\n");

 a) 7

 b) The value is less than eight.

 c) 8

 d) No value is returned, since the test is false.

2. Which of the following is the correct nested if code?

 a) if(c >= '0')

 if(c<= '9');

 printf("This is a number.\n");

 b) if(c >= '0');

 if(c <= '9');

 printf("This is a number.\n");

 c) if(c >= '0')

 if(c <= '9')

 printf("This is a number.\n");

 d) if(c >= '0'):

 if(c <= '9')

 printf("This is a number.\n");

3. Which of the following is a correct code fragment from

 a case construct?

 Chapter 4: Statements and Control Flow 55

 a) case 1;

 rate = .01;

 break;

 b) case 2:

 rate = .02;

 break;

 c) case 3

 rate = .03;

 break;

 d) case 4:

 rate = .01

 break;

4. Which of the following identifies the purpose of

 'default' in a switch statement?

 a) it terminates the switch statement

 b) it identifies the values being compared

 c) it executes only if the test value does not equal

 any of the other cases in the switch

 d) it causes the compiler to skip the switch

 statement

5. Which one of the following code fragments is written

 correctly?

 a) for(x = 0, x <= 200, x=x+1)

 b) for(x = 0; x <= 200; x=x+1);

 c) for(x = 0; x <= 200; x=x+1)

 d) for(x = 0; x <= 200; x=x+1;)

 6. How many times will the following message be printed?

Lenovo
Highlight

 Introduction to Programming 56

 for (x = 10, y = 0; x < 100; x =x+ 10, y=y+1)

 printf("this is a test \n");

 a) 1 time

 b) 9 times

 c) 10 times

 d) 100 times

 7. In writing a for loop, which code fragment would be

 accepted?

 a) for(; x <= 10; x=x+1;)

 b) for(; x <= 10; x=x+1)

 c) for(x <= 10; x=x+1)

 d) for(x <= 10; ; x=x+1)

 8. Which of the following code fragments is correct?

 a) while{

 (x < 21)

 printf("Hit me again\n");

 x=x+1;

 }

 b) while (x < 21);

 {

 printf("Hit me again\n");

 x=x+1;

 }

 c) while (x < 21) x=x+1;

 {

 printf("Hit me again\n");

 }

 d) while (x < 21){

 printf("Hit me again\n");

 x=x+1;

 }

9. At a minimum, how many times will the loop body of a

 Chapter 4: Statements and Control Flow 57

 while loop be executed?

 a) less than one time

 b) one time

 c) two times

 d) more than two times

10. With a while loop, what loop control component is

 required?

 a) initial value

 b) test condition

 c) loop increment

 d) do

11. Which of the following code fragments is correct?

 a) do

 { while (x < 21)

 printf("Hit me again\n");

 }

 x=x+1;

 b) do-while

 {

 printf("Hit me again\n");

 x=x+1;

 }

 c) do

 {

 printf("Hit me again\n");

 x=x+1;

 }while(x < 21);

 d) do

 {

 printf("Hit me again\n");

 x=x+1;

 }while (x < 21)

12. With a do-while loop, which of the following is

 Introduction to Programming 58

 executed first?

 a) loop body

 b) while statement

 c) test condition

 d) loop control

13. With a do-while loop, the loop body is executed if the

 test condition is

 a) true, but not false

 b) false, but not true

 c) either true or false

 d) false to begin with and true later on

14. At a minimum, how many times will the loop body of a

 do-while loop be executed?

 a) less than one time

 b) one time

 c) two times

 d) more than two times

15. Which one of the following does not terminate the

 execution of a loop?

 a) continue statement

 b) break statement

 c) goto statement

 d) All of the above terminate the execution of a loop.

16. Given the following code fragment, what values will be

 printed when x = 4?

 Chapter 4: Statements and Control Flow 59

 for (x = 1; x <= 5; x=x+1)

 {

 y = 1;

 while (y <= 3)

 {

 printf("%3d",x*y);

 y++;

 }

 }

 a) 1 2 3

 b) 5 6 7

 c) 4 8 12

 d) 5 10 15

17. What would the equivalent code, using a while loop, be

for the example

 for(i = 0; i < 10; i = i + 1)

 printf("i is %d\n", i);

18. What is the numeric value of the expression 3 < 4 ?

19. Under what conditions will this code print “water”?

 if(T < 32)

 printf("ice\n");

 else if(T < 212)

 printf("water\n");

 else printf("steam\n");

20. What would this code print?

 int x = 3;

 if(x)

 printf("yes\n");

 else printf("no\n");

21. (trick question) What would this code print?

 int i;

 for(i = 0; i < 3; i = i + 1)

 printf("a\n");

 printf("b\n");

 printf("c\n");

22. Write a program to find out how many of the numbers

from 1 to 10 are greater than 3. (The answer, of course,

 Introduction to Programming 60

should be 7.) Your program should have a loop which steps a

variable over the 10 numbers, after the loop has finished,

print out the count).

23. Write a program to compute the average of the ten

numbers 1, 4, 9, ..., 81, 100, that is, the average of the

squares of the numbers from 1 to 10.

Note: you should keep track of the sum in a variable of

type float or double to get the answer as a floating-point

number, which you should print out using %f in the printf

format string, not %d. (In a printf format string, %d

prints only integers, and %f is one way to print floating-

point numbers. In this case, the answer should be 38.5

24. Write a program to print the numbers between 1 and 10,

along with an indication of whether each is even or odd,

like this:

 1 is odd

 2 is even

 3 is odd

 ...

(Hint: use the % operator.)

25. Write a program to print the first 10 Fibonacci

numbers. Each Fibonacci number is the sum of the two

preceding ones. The sequence starts out 0, 1, 1, 2, 3, 5,

8, ...

26. Write a program to print this triangle:

 *

 **

Don't use ten printf statements; use two nested loops

instead. You'll have to use braces around the body of the

outer loop if it contains multiple statements:

 for(i = 1; i <= 10; i = i + 1){

 /* statements */

 }

 Chapter 5: More About Declarations and Operators 61

 Chapter 5

5 More about Declarations and Operators

In this Chapter we will consider declarations and usage of a very

important concept in C called arrays. At the same time we will consider

more advanced arithmetic operators in C.

5.1 Arrays

The concept of an array is common to most programming languages. In

an array, multiple values of the same data type can be stored with one

variable name. The use of arrays allows for the development of smaller

and more clearly readable programs.

To declare an array of several elements:

 int a[10];

declares an array, named a, consisting of ten elements, each of type int.

Simply speaking, an array is a variable that can hold more than one

value. You specify which of the several values you're referring to at any

given time by using a numeric index. (Arrays in programming are

similar to vectors or matrices in mathematics) We can represent the

array a above with a picture like this:

In C, arrays are zero-based: the ten elements of a 10-element array are

numbered from 0 to 9. The index that specifies a single element of an

array is simply an integer expression in square brackets. The first

element of the array is a[0], the second element is a[1], etc. You can use

these “array index expressions'' anywhere you can use the name of a

simple variable, for example:

 a[0] = 10;
 a[1] = 20;
 a[2] = a[0] + a[1];

 Introduction to Programming 62

Notice that the indexed array references (i.e. expressions such as a[0]

and a[1]) can appear on either side of the assignment operator.

The index does not have to be a constant like 0 or 1; it can be any integral

expression. For example, it's common to loop over all elements of an

array:

 int i;
 for(i = 0; i < 10; i = i + 1)
 a[i] = 0;

This loop sets all ten elements of the array a to 0.

Arrays are a real convenience for many problems, but there is

not a lot that C will do with them for you automatically. In

particular, you can neither set all elements of an array at once nor assign

one array to another; both of the assignments

 a = 0; /* WRONG */

and
 int b[10];
 b = a; /* WRONG */

are illegal.

To set all of the elements of an array to some value, you must do so one

by one, as in the loop example above. To copy the contents of one array to

another, you must again do so one by one:
 int b[10];

 for(i = 0; i < 10; i = i + 1)
 b[i] = a[i];

Remember that for an array declared:
 int a[10];

there is no element a[10]; the topmost element is a[9]. This is one

reason that zero-based loops are also common in C. Note that the for

loop
 for(i = 0; i < 10; i = i + 1)

 ...

does just what you want in this case: it starts at 0, the number 10

suggests (correctly) that it goes through 10 iterations, but the less-than

 Chapter 5: More About Declarations and Operators 63

comparison means that the last trip through the loop has i set to 9. (The

comparison i <= 9 would also work, but it would be less clear and

therefore poorer style.)

In the little examples so far, we've always looped over all 10 elements of

the sample array a. It's common, however, to use an array that's bigger

than necessarily needed, and to use a second variable to keep track of

how many elements of the array are currently in use. For example, we

might have an integer variable
 int numElements;

Then, when we wanted to do something with array a (such as print it

out), the loop would run from 0 to numElements, not 10 (or whatever a's

size was):
 for(i = 0; i < numElements; i = i + 1)

 printf("%d\n", a[i]);

Naturally, we would have to ensure ensure that numElements value was

always less than or equal to the number of elements actually declared in

a. Arrays are not limited to type int; you can have arrays of char or

double or any other type.

The code in

Listing ‎5-1 is a slightly larger example of the use of arrays. Suppose we

want to investigate the behavior of rolling a pair of dice. The total roll can

be anywhere from 2 to 12, and we want to count how often each roll

comes up. We will use an array to keep track of the counts: a[2] will

count how many times we've rolled 2, etc.

We'll simulate the roll of a die by calling C's random number

generation function, rand(). Each time you call rand(), it returns a

different, pseudo-random integer. The values that rand() returns

typically span a large range, so we'll use C's modulus (or “remainder”)

operator % to produce random numbers in the range we want. The

expression rand() % 6 produces random numbers in the range 0 to 5,

and rand() % 6 + 1 produces random numbers in the range 1 to 6.

 Introduction to Programming 64

Listing ‎5-1: Example of an Array Usage

We include the header <stdlib.h> because it contains the necessary

declarations for the rand() function. We declare the array of size 13 so

that its highest element will be a[12]. (We're wasting a[0] and a[1]; this

is no great loss.) The variables d1 and d2 contain the rolls of the two

individual dice; we add them together to decide which cell of the array to

increment, in the line
 a[d1 + d2] = a[d1 + d2] + 1;

After 100 rolls, we print the array out.

5.1.1 Array Initialization

It is possible to initialize some or all elements of an array when the array

is defined. The syntax looks like this:

1. #include <stdio.h>
2. #include <stdlib.h>

3. int main(){
4. int i;
5. int d1, d2;
6. int a[13]; /* uses [2..12] */
7.
8. for(i = 2; i <= 12; i = i + 1)
9. a[i] = 0;

10. for(i = 0; i < 100; i = i + 1){
11. d1 = rand() % 6 + 1;
12. d2 = rand() % 6 + 1;
13. a[d1 + d2] = a[d1 + d2] + 1;
14. }

15. for(i = 2; i <= 12; i = i + 1)
16. printf("%d: %d\n", i, a[i]);

17. return 0;
18. }

 Chapter 5: More About Declarations and Operators 65

 int a[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

The list of values, enclosed in braces {}, separated by commas, provides

the initial values for successive elements of the array.

If there are fewer initializers than elements in the array, the remaining

elements are automatically initialized to 0. For example,

 int a[10] = {0, 1, 2, 3, 4, 5, 6};

would initialize a[7], a[8], and a[9] to 0. When an array definition

includes an initializer, the array dimension may be omitted, and the

compiler will infer the dimension from the number of initializers. For

example,
 int b[] = {10, 11, 12, 13, 14};

would declare, define, and initialize an array b of 5 elements (i.e.

just as if you'd typed int b[5]). Only the dimension is omitted; the

brackets [] remain to indicate that b is in fact an array.

In the case of arrays of char, the initializer may be a string constant:

 char s1[7] = "Hello,";

 char s2[10] = "there,";

 char s3[] = "world!";

As before, if the dimension is omitted, it is inferred from the size of the

string initializer. (We haven't covered strings in detail yet--we'll do so in

a later chapter--but it turns out that all strings in C are terminated by a

special character with the value 0 (null character). Therefore, the

array s3 will be of size 7, and the explicitly-sized s1 does need to be of size

at least 7. For s2, the last 4 characters in the array will all end up being

this zero-value character.)

5.1.2 Arrays of Arrays (Multidimensional Arrays)
When we said that “Arrays are not limited to type int; you can have

arrays of... any other type,'' we meant that more literally than you might

 Introduction to Programming 66

have guessed. If you have an “array of int” it means that you have an

array each of whose elements is of type int. But you can have an array

each of whose elements is of type x, where x is any type you choose. In

particular, you can have an array each of whose elements is another

array! We can use these arrays of arrays for the same sorts of tasks as we

would use multidimensional arrays in matrices in mathematics.

Naturally, we are not limited to arrays of arrays, either; we could have an

array of arrays of arrays, which would act like a 3-dimensional array, etc.

Figure ‎5-1: Multidimensional Arrray

The declaration of an array of arrays looks like this:

 int a2[5][7];

You have to read complicated declarations like these inside out. What

this one says is that a2 is an array of 5 somethings, and that each of the

somethings is an array of 7 ints. More briefly, “a2 is an array of 5 arrays

of 7 ints”. You can think of a2 as having 5 rows and 7 columns.

To illustrate the use of multidimensional arrays, we might fill in the

elements of the above array a2 using this piece of code:

 int i, j;

 for(i = 0; i < 5; i = i + 1){ //iterate on rows

 for(j = 0; j < 7; j = j + 1) // iterate on columns

 a2[i][j] = 10 * i + j;

 }

This pair of nested loops sets a[1][2] to 12, a[4][1] to 41, etc. Since the

first dimension of a2 is 5, the first index variable, i, runs from 0 to 4.

Similarly, the second index varies from 0 to 6.

 Chapter 5: More About Declarations and Operators 67

We could print a2 out (in a two-dimensional way, suggesting its

structure) with a similar pair of nested loops:

 for(i = 0; i < 5; i = i + 1){

 for(j = 0; j < 7; j = j + 1)

 printf("%d\t", a2[i][j]);

 printf("\n");

 }

(The character \t in the printf string is the tab character.)

Multidimensional arrays may be initialized by specifying bracketed

values for each row. Following is an array with 3 rows and each row has 4

columns.

int a[3][4] = {

 {0, 1, 2, 3} , /* initializers for row indexed by 0 */

 {4, 5, 6, 7} , /* initializers for row indexed by 1 */

 {8, 9, 10, 11} /* initializers for row indexed by 2 */

};

The nested braces, which indicate the intended row, are optional. The

following initialization is equivalent to previous example:

int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};

5.2 More Operators

It's extremely common in programming to have to increment a variable

by 1, that is, to add 1 to it. (For example, if you're processing each

element of an array, you'll typically write a loop with an index variable

stepping through the elements of the array, and you'll increment the

variable each time through the loop.) The classic way to increment a

variable is with an assignment like:

 i = i + 1

Such an assignment is perfectly common and acceptable, but it has a few

slight problems:

a. It looks a little odd, especially from an algebraic perspective.

 Introduction to Programming 68

b. If the object being incremented is not a simple variable, the

idiom can become cumbersome to type, and correspondingly

more error-prone. For example, the expression

a[i+j+2*k] = a[i+j+2*k] + 1

is a bit of a mess, and you may have to look closely to see that

the similar-looking expression

 a[i+j+2*k] = a[i+j+2+k] + 1

probably has a mistake in it.

Since incrementing things is so common, it might be nice to have an

easier way of doing it. In fact, C provides not one but two other, simpler

ways of incrementing variables and performing other similar operations.

5.2.1 Assignment Operators

The first and more general way is that any time you have the pattern

 v = v op e

where v is any variable (or anything like a[i]), op is any of the binary

arithmetic operators we've seen so far, and e is any expression, you can

replace it with the simplified

 v op= e

For example, you can replace the expressions

i = i + 1

j = j - 10

k = k * (n + 1)

a[i] = a[i] / b

with

i += 1

 Chapter 5: More About Declarations and Operators 69

j -= 10

k *= n + 1

a[i] /= b

In a previous example in this chapter, we have used the assignment:

a[d1 + d2] = a[d1 + d2] + 1;

to count the rolls of a pair of dice. Using +=, we could simplify this

expression to

 a[d1 + d2] += 1;

As these examples show, you can use the

‚op=‛ form with any of the arithmetic operators. The expression, e, does

not have to be the constant 1; it can be any expression. You don't always

need as many explicit parentheses when using the op= operators: the

expression

 k *= n + 1;

is interpreted as

 k = k * (n + 1);

5.2.2 Increment and Decrement Operators

The assignment operators of the previous section let us replace v = v op

e with v op= e, so that we didn't have to mention v twice. In the most

common cases, namely when we're adding or subtracting the constant 1

(that is, when op is + or - and e is 1), C provides another set of shortcuts:

the auto-increment and auto-decrement operators. In their

simplest forms, they look like this:

 ++i add 1 to i

 --j subtract 1 from j

These correspond to the slightly longer i += 1 and j -= 1 respectively.

 Introduction to Programming 70

The ++ and -- operators apply to one operand (they're unary

operators). The expression ++i adds 1 to i, and stores the incremented

result back in i. This means that these operators don't just compute new

values; they also modify the value of some variable.

The incremented (or decremented) result is also made available to the

rest of the expression, so an expression like:

 k = 2 * ++i;

means “add one to i, store the result back in i, multiply it by 2, and store

that result in k''. So for example if i here equals 1, after the execution of

this expression, i will equal 2 and k will equal 4.

Both the ++ and -- operators have an unusual property: they

can be used in two ways, depending on whether they are

written to the left or the right of the variable they are operating on. In

either case, they increment or decrement the variable they are applied to;

the difference concerns whether it's the old or the new value that's

“returned” to the surrounding expression. The prefix form ++i

increments i and returns the incremented value. The postfix form i++

increments i, but returns the old, non-incremented value. Rewriting our

previous example slightly, the expression:

 k = 2 * i++;

means “take i's old value and multiply it by 2, store the result of

the multiplication in k, and then increment i''. . So if i equals 1,

after the execution of this expression, i will equal 2 and k will equal 2.

The distinction between the prefix and postfix forms of ++ and -- will

probably seem strained at first, but it will make more sense once we

begin using these operators in more realistic situations.

As a simple example, consider this code fragment:

int i=1;

printf("i is %d\n", i++); // i is 1

 printf("i is %d\n", ++i); // i is 3

 Chapter 5: More About Declarations and Operators 71

In the first printf statement, we are using the postfix form that returns

first the current value of i to the printf statement and then increment i

to 2. In the second printf the prefix form increments i first to 3, then

returns its new value to the printf statement.

Notice that the ++ operator doesn't just mean “add one”; it means

“add one to a variable” or “make a variable's value one more than it

was before”. So try to avoid which some confused programmers

sometimes write, presumably because they want to be extra sure that i is

incremented by 1:

 i = i++;

But i++ all by itself is sufficient to increment i by 1; the extra (explicit)

assignment to i is unnecessary and in fact counterproductive,

meaningless, and incorrect. If you want to increment i (that is, add one

to it, and store the result back in i), either use:

 i = i + 1;

or

 i += 1;

or

 ++i;

or

 i++;

Did it matter whether we used ++i or i++ in this last example?

Remember, the difference between the two forms is what value (either

the old or the new) is passed on to the surrounding expression. If there is

no surrounding expression, if the ++i or i++ appears all by itself, to

increment i and do nothing else, you can use either form; it makes no

difference. Two ways that an expression can appear “all by itself”. When

it is an expression statement terminated by a semicolon, as above, or

 Introduction to Programming 72

when it is one of the controlling expressions of a for loop. For example,

both the loops

 for(i = 0; i < 10; ++i)

 printf("%d\n", i);

and

 for(i = 0; i < 10; i++)

 printf("%d\n", i);

will behave exactly the same way and produce exactly the same results.

In the preceding section, we simplified the expression:

 a[d1 + d2] = a[d1 + d2] + 1;

from a previous chapter down to

 a[d1 + d2] += 1;

Using ++, we could simplify it still further to

 a[d1 + d2]++;

or

 ++a[d1 + d2];

(Again, in this case, both are equivalent.)

5.2.3 Order of Evaluation

When you start using the ++ and -- operators in larger expressions, you

end up with expressions which do several things at once, i.e., they modify

several different variables at more or less the same time. When you write

such an expression, you must be careful not to have the expression to

assign two different values to the same variable, or by assigning a new

value to a variable at the same time that another part of the expression is

trying to use the value of that variable.

 Chapter 5: More About Declarations and Operators 73

Assume for example the following expression:

 a[i++] = b[j++];

which assigns b[j] to a[i], and increments i, and increments j. If you're

not careful, though, it's easy for this sort of thing to get out of hand. Can

you figure out exactly what the expression:

 a[i++] = b[i++]; /* WRONG */

should do? I can't, and here's the important part: neither can the

compiler. We know that the definition of postfix ++ is that the former

value, before the increment, is what goes on to participate in the rest of

the expression, but the expression a[i++] = b[i++] contains two ++

operators. Which of them happens first? Does this expression assign the

old ith element of b to the new ith element of a, or vice versa? No one

knows.

When the order of evaluation matters but is not well-defined (that is,

when we can't say for sure which order the compiler will evaluate the

various dependent parts in) we say that the meaning of the expression is

undefined, and if we're smart we won't write the expression in the first

place. Why would anyone ever write an “undefined” expression? Because

sometimes, the compiler happens to evaluate it in the order a

programmer wanted, and the programmer assumes that since it works, it

must be okay.

For example, suppose we carelessly wrote this loop:

 int i, a[10];

 i = 0;

 while(i < 10)

 a[i] = i++; /* WRONG */

It looks like we're trying to set a[0] to 0, a[1] to 1, etc. But what if

the increment i++ happens before the compiler decides which cell

of the array a to store the (un-incremented) result in? We might end up

setting a[1] to 0, a[2] to 1, etc., instead. Since, in this case, we can't be

 Introduction to Programming 74

sure which order things would happen in, we simply shouldn't write code

like this. In this case, what we're doing matches the pattern of a for loop,

anyway, which would be a better choice:

 for(i = 0; i < 10; i++)

 a[i] = i;

Now that the increment i++ isn't crammed into the same expression

that's setting a[i], the code is perfectly well-defined, and is guaranteed

to do what we want.

In general, you should be wary of ever trying to second-guess the order

an expression will be evaluated in, with two exceptions:

Although we haven't mentioned it yet, it is guaranteed that the

logical operators && and || are evaluated left-to-right, and that

the right-hand side is not evaluated at all if the left-hand side

determines the outcome.

To look at one more example, it might seem that the code:

 int i = 7;

 printf("%d\n", i++ * i++);

would have to print 56, because no matter which order the increments

happen in, 7*8 is 8*7 is 56. But ++ just says that the increment happens

later, not that it happens immediately, so this code could print 49 (if the

compiler chose to perform the multiplication first, and both increments

later). And, it turns out that ambiguous expressions like this are such a

bad idea that the ANSI C Standard does not require compilers to do

anything reasonable with them at all. Theoretically, the above code could

end up printing 42, or 8923409342, or 0, or crashing your computer.

Programmers sometimes mistakenly imagine that they can write an

expression which tries to do too much at once and then predict exactly

how it will behave based on “order of evaluation”. For example, we know

that multiplication has higher precedence than addition, which means

that in the expression

 Chapter 5: More About Declarations and Operators 75

 i + j * k

j will be multiplied by k, and then i will be added to the result.

Informally, we often say that the multiplication happens before' the

addition. That's true in this case, but it doesn't say as much as we might

think about a more complicated expression, such as

 i++ + j++ * k++

In this case, besides the addition and multiplication, i, j, and k are all

being incremented. We cannot say which of them will be incremented

first; it's the compiler's choice. (In particular, it is not necessarily the case

that j++ or k++ will happen first; the compiler might choose to save i's

value somewhere and increment i first, even though it will have to keep

the old value around until after it has done the multiplication.)

In the preceding example, it probably doesn't matter -which variable is

incremented first. It's not too hard, though, to write an expression where

it does matter. In fact, we've seen one already: the ambiguous assignment

a[i++] = b[i++]. We still don't know which i++ happens first. (We

cannot assume, based on the right-to-left behavior of the = operator, that

the right-hand i++ will happen first.) But if we had to know what a[i++]

= b[i++] really did, we'd have to know which i++ happened first.

Finally, note that parentheses don't dictate overall evaluation order any

more than precedence does. Parentheses override precedence and say

which operands go with which operators, and they therefore affect the

overall meaning of an expression, but they don't say anything about the

order of sub-expressions or side effects. We could not “fix” the evaluation

order of any of the expressions we've been discussing by adding

parentheses. If we wrote

 i++ + (j++ * k++)

we still wouldn't know which of the increments would happen first. (The

parentheses would force the multiplication to happen before the

addition, but precedence already would have forced that, anyway.) If we

wrote

 (i++) * (i++)

 Introduction to Programming 76

the parentheses wouldn't force the increments to happen before the

multiplication or in any well-defined order; this parenthesized version

would be just as undefined as i++ * i++ was.

Many programmers encourage you to write small programs to find out

how your compiler implements some of these ambiguous expressions,

but it's just one step from writing a small program to find out, to writing

a real program which makes use of what you've just learned. But you

don't want to write programs that work only under one particular

compiler, that take advantage of the way that one compiler (but

perhaps no other) happens to implement the undefined expressions.

Please keep very firmly in mind that, for real programs, the

very easiest way of dealing with ambiguous, undefined

expressions (which one compiler interprets one way and another

interprets another way and a third crashes on) is not to write them in the

first place.

5.3 Exercises

1) Which data type is used for array subscripts?

 a) char only

 b) int only

 c) char and int only

 d) int, float, and char only

2) Given the following code fragment, what is the value of
 arg1[5]?

 int arg1[] = {1,2,3,4,5};

 a) 0

 b) 4

 c) 5

 d) Not a meaningful value.

Lenovo
Highlight

 Chapter 5: More About Declarations and Operators 77

3) Given the following code fragment, which of the

following is correct?

 num[3] = 9;

 --num[3];

 a) num[3] = 9

 b) num[2] = 9

 c) num[3] = 8

 d) num[2] = 8

4) Which of the following declares a float array called

worksheet[], with 30 rows and 50 columns?

 a) float worksheet array[30][50];

 b) float worksheet[50][30];

 c) float worksheet[30][50];

e) worksheet[30][50] = float;

5) The shorthand expression for x = x + 10 is:

 a) x += 10;

 b) +x = 10;

 c) x =+ 10;

 d) x = 10+;

6) The result of the following arithmetic expression is?

 y = 6 * 4 % 3 * 5;

 a) 0

 b) 9

 c) 30

 d) 40

Lenovo
Highlight

 Introduction to Programming 78

7) What value does the computer give to the following
 expression if x is -4?

 ((x <= 5) && (x != 0) && (x >= -5))

 a) 0

 b) 1

 c) 2

 d) 3

8) Evaluate the following expressions that use the

arithmetic operators where i = 10, j = 2, and k = 3.

 Expression Result

 --------------------------------- --------------------

 i - j * k

 i - i / j

 k % i + j

 i % 2 * k

 i + j * k - i / j

9) Evaluate the following logical expressions where
 i = 10, j = 2, and k = 3.

 Expression Result

 --------------------------------- --------------------

 i - 2 * (j + k) || i

 i - 2 * (j + k) && i

 j = i || k

 j = i || k || j

 j - k || j && k

Lenovo
Highlight

 Chapter 5: More About Declarations and Operators 79

10) Evaluate following expressions where i = 10, j = 2, and
k = 3.

 Expression Result

 --------------------------------- --------------------

 i =+ j

 i = j + k--

 i=j + k++

 i=j-- + ++k

11. What's wrong with this scrap of code?
 int a[5];

 for(i = 1; i <= 5; i = i + 1)

 a[i] = 0;

12. What is the difference between the prefix and postfix
forms of the ++ operator?

13. (trick question) What would the expression
 i = i++

 do?

14. Write a program to perform the following:

a) Define and initialize an array with the following

data

 6 -2 8 -13 2 7

b) Calculate and print to screen the total and average
of the data

c) Calculate and print to screen the maximum value
d) Calculate and print to screen the minimum value

15. Write a program to sort and print out the array in the
previous question.

16. Write a program to define and initialize the following
two matrices and then find the summation of them in a

third matrix.

[

] [

]

 Chapter 6: Functions and Program Structure 80

 Chapter 6

6 Functions and Program Structure

A function is a “black box” that we've locked part of our program

into. The idea behind a function is that it groups part of the program

and in particular, that the code within the function has some useful

properties:

a. It performs some well-defined task, which will be useful to

other parts of the program.

b. It might be useful to other programs as well; that is, we might

be able to reuse it (and without having to rewrite it).

c. The rest of the program doesn't have to know the details of

how the function is implemented. This can make the rest of

the program easier to think about.

d. By placing the code to perform the useful task into a function,

and simply calling the function in the other parts of the

program where the task must be performed, the rest of the

program becomes clearer: rather than having some large,

complicated, difficult-to-understand piece of code repeated

wherever the task is being performed, we have a single simple

function call, and the name of the function reminds us which

task is being performed.

e. Since the rest of the program doesn't have to know the details

of how the function is implemented, the rest of the program

doesn't care if the function is re-implemented later, in some

different way (as long as it continues to perform its same task,

of course!). This means that one part of the program can be

rewritten, to improve performance or add a new feature (or

simply to fix a bug), without having to rewrite the rest of the

program.

6.1 Functions Basics

So what defines a function? It has a name that you call it by, and a list

of zero or more arguments or parameters that you hand to it for it

to act on or to direct its work; it has a body containing the actual

Lenovo
Highlight

Lenovo
Highlight

Lenovo
Highlight

Lenovo
Highlight

 Introduction to Programming 81

instructions (statements) for carrying out the task the function is

supposed to perform; and it may give you back a return value, of a

particular type.

Here is a very simple function, which accepts one argument, multiplies

it by 2, and hands that value back:

 int multbytwo(int x)

 {

 int retval;

 retval = x * 2;

 return retval;

 }

On the first line we see the return type of the function (int), the

name of the function (multbytwo), and a list of the function's

arguments, enclosed in parentheses. Each argument has both a

name and a type; multbytwo accepts one argument, of type int, named

x. The name x is arbitrary, and is used only within the definition of

multbytwo. The caller of this function only needs to know that a single

argument of type int is expected; the caller does not need to know

what name the function will use internally to refer to that argument.

In particular, the caller does not have to pass the value of a variable

named x.

Next we see, surrounded by the familiar braces, the body of the

function itself. This function consists of one variable declaration

(retval) and two statements. The first statement is a conventional

expression statement, which computes and assigns a value to retval,

and the second statement is a return statement, which causes the

function to return to its caller, and also specifies the value which the

function returns to its caller.

The return statement can return the value of any expression, so we

don't really need the retval variable; the function could be collapsed

to:

Lenovo
Highlight

 Chapter 6: Functions and Program Structure 82

 int multbytwo(int x)

 {

 return x * 2;

 }

How do we call a function? We've been doing so informally since day

one, but now we have a chance to call one that we've written, in full

detail. Listing ‎6-1 introduces a tiny program to call multbytwo

function:

Listing ‎6-1: Example of a User-defined Function

Line 2 in the program is called a function prototype declaration.

It declares to the main function something that is defined somewhere

else (here in the same source file). The function prototype declaration

contains the three pieces of information about the function that a

caller needs to know: the function's name, return type, and argument

type(s). Since we don't care what name the multbytwo function will

use to refer to its first argument, we don't need to mention it. On the

other hand, if a function takes several arguments, giving them names

in the prototype may make it easier to remember which is which, so

names may optionally be used in function prototype declarations. The

presence of the function prototype declaration lets the compiler know

that we intend to call this function, multbytwo. The information in the

19. #include <stdio.h>

20. int multbytwo(int);

21. int main(){
22. int i, j;
23. i = 3;
24. j = multbytwo(i); //call the function
25. printf("%d\n", j);
26. return 0;
27. }

28. /*----------Function multbytwo------------*/
29. int multbytwo(int x){
30. return x * 2;
31. }

 Introduction to Programming 83

prototype lets the compiler generate the correct code for calling the

function, and also enables the compiler to check up on our code by

making sure, for example, that we pass the correct number of

arguments to each function we call.

Down in the body of main, the action of the function call should be

obvious in line 6.

 j = multbytwo(i);

calls multbytwo, passing it the value of i as its argument. When

multbytwo returns, the return value is assigned to the variable j.

Notice that the variable i isn't really needed, since we could just call:

 j = multbytwo(3);

And the variable j isn't really needed, either, since we could just call:

 printf("%d\n", multbytwo(3));

Here, the call to multbytwo is a sub-expression which serves as the

second argument to printf. The value returned by multbytwo is passed

immediately to printf.

We should say a little more about the mechanism by which

an argument is passed down from a caller into a function.

Formally, C is call by value, which means that a function receives

copies of the values of its arguments. We can illustrate this with an

example. Suppose, in our implementation of multbytwo, we had gotten

rid of the unnecessary retval variable like this:

 int multbytwo(int x){

 x = x * 2;

 return x;

 }

We might wonder, if we wrote it this way, what would happen to the

value of the variable i when we called

 j = multbytwo(i);

 Chapter 6: Functions and Program Structure 84

When our implementation of multbytwo changes the value of x, does

that change the value of i up in the caller? The answer is no. x

receives a copy of i's value, so when we change x we don't change i.

However, there is an exception to this rule. When the

argument you pass to a function is not a single variable,

but is rather an array, the function does not receive a copy of the

array, and it therefore can modify the array in the caller. The

reason is that it might be too expensive to copy the entire array, and

furthermore, it can be useful for the function to write into the caller's

array, as a way of handing back more data than would fit in the

function's single return value. We'll see an example of an array

argument (which the function deliberately writes into) in the next

chapter.

6.1.1 Function Prototypes

In modern C programming, it is considered good practice to use

prototype declarations for all functions that you call. As we

mentioned, these prototypes help to ensure that the compiler can

generate correct code for calling the functions, as well as allowing the

compiler to catch certain mistakes you might make.

Strictly speaking, however, prototypes are optional. You can omit the

prototype but you have to define your function before your main

function; so that the compiler will be able to recognize the function

before entering the main. However, this is not a good practice. Usually,

a good programmer keep his main as the first function (to be found

easily) and define all other functions after it.

If prototypes are a good idea, and if we're going to get in the habit of

writing function prototype declarations for functions we call that we've

written (such as multbytwo), what happens for library functions such

as printf? Where are their prototypes? The answer is in that line:

 #include <stdio.h>

 Introduction to Programming 85

we've been including at the top of all of our programs. stdio.h is

conceptually a file full of external declarations and other information

pertaining to the “Standard I/O” library functions, including printf.

6.1.2 Function Philosophy

What makes a good function? The most important aspect of a good

“building block” is that have a single, well-defined task to perform.

When you find that a program is hard to manage, it's often because it

has not been designed and broken up into functions cleanly. Two

obvious reasons for moving code down into a function are because:

1. It appeared in the main program several times, such that

by making it a function, it can be written just once, and the

several places where it used to appear can be replaced with

calls to the new function.

2. The main program was getting too big, so it could be made

(presumably) smaller and more manageable by lopping part of

it off and making it a function.

These two reasons are important, and they represent significant

benefits of well-chosen functions, but they are not sufficient to

automatically identify a good function. As we've been suggesting, a

good function has at least these two additional attributes:

3. It does just one well-defined task, and does it well.

4. Its interface (arguments and return type) to the rest of the

program is clean and narrow.

Attribute 3 is just a restatement of two things we said above.

Attribute 4 says that you shouldn't have to keep track of too

many things when calling a function. If you know what a function is

supposed to do, and if its task is simple and well-defined, there should

be just a few pieces of information you have to give it to act upon, and

one or just a few pieces of information which it returns to you when

it's done. If you find yourself having to pass lots and lots of

information to a function, or remember details of its internal

 Chapter 6: Functions and Program Structure 86

implementation to make sure that it will work properly this time, it's

often a sign that the function is not sufficiently well-defined.

The whole point of breaking a program up into functions is so that you

don't have to think about the entire program at once; ideally, you can

think about just one function at a time. We say that a good function is

a “black box”. When you call a function, you only have to know what

it does, not how it does it. When you're writing a function, you only

have to know what it's supposed to do, and you don't have to know

why or under what circumstances its caller will be calling it.

In fact, if a difficult-to-write function's interface is well-defined, you

may be able to get away with writing a quick-and-dirty version of the

function first, so that you can begin testing the rest of the program,

and then go back later and rewrite the function to do the hard parts.

As long as the function's original interface anticipated the hard parts,

you won't have to rewrite the rest of the program when you fix the

function.

6.2 Void (Non Value-Returning) Functions

Void functions are created and used just like value-returning functions

except they do not return a value after the function executes. Instead

of a data type, void functions use the keyword "void." A void function

performs a task, and then control returns back to the caller--but, it

does not return a value. You may or may not use the return statement,

as there is no return value. Even without the return statement, control

will return to the caller automatically at the end of the function. As an

example of a void function is a function to repeat the word “Hello” on

the screen a certain number of times:

void printHello(int num){

 for(int i=0;i<num;i++)

 printf(‚Hello\n‛);

}

To call this function, you can simply write:

printHello(10); //print Hello 10 times

 Introduction to Programming 87

There are a set of similarities between value-returning and void

functions:

 Both: definitions can be placed before or after function

main()...

 though, if placed after main() function, prototypes must be

placed before main()

 Both: formal parameter list can be empty--though,

parentheses still required

 Both: actual parameter list can use expression or variable, but

must match in: type, order, number

Also there are a set of differences between value-returning and void

functions:

 Void function: does not have return type

 Uses keyword void in function header

 Call to void function is stand-alone statement

6.3 Variables Visibility and Lifetime

We haven't said so explicitly, but variables are channels of

communication within a program. You set a variable to a value at

one point in a program, and at another point (or points) you read the

value out again. The two points may be in adjoining statements, or

they may be in widely separated parts of the program (different

functions).

How long does a variable last? How widely separated can the setting

and fetching parts of the program be, and how long after a variable is

set does it persist? Depending on the variable and how you're using it,

you might want different answers to these questions.

The visibility of a variable determines how much of the rest of the

program can access that variable. You can arrange that a variable is

 Chapter 6: Functions and Program Structure 88

visible only within one part of one function, or in one function, or in

one source file, or anywhere in the program. (Program code can be

separated into several files)

A variable declared within the braces { } of a function is visible only

within that function; variables declared within functions are called

local variables. If another function somewhere else declares a local

variable with the same name, it's a different variable entirely, and the

two don't clash with each other.

On the other hand, a variable declared outside of any function is a

global variable, and it is potentially visible anywhere within the

program. You use global variables when you do want the

communications path to be able to travel to any part of the program.

When you declare a global variable, you will usually give it a longer,

more descriptive name (not something generic like i) so that

whenever you use it you will remember that it's the same variable

everywhere.2

How long do variables last? By default, local variables (those

declared within a function) have automatic duration: they spring

into existence when the function is called, and they (and their values)

disappear when the function returns. Global variables, on the other

hand, have static duration: they last, and the values stored in them

persist, for as long as the program does. (Of course, the values can in

general still be overwritten, so they don't necessarily persist forever.)

Finally, it is possible to split a program up into several source files, for

easier maintenance. When several source files are combined into one

program, the compiler must have a way of correlating the global

variables which might be used to communicate between the several

source files. Furthermore, if a global variable is going to be useful for

communication, there must be exactly one of it: you wouldn't want

one function in one source file to store a value in one global variable

named globalvar, and then have another function in another source

file read from a different global variable named globalvar. Therefore,

2 Another word for the visibility of variables is variable scope.

 Introduction to Programming 89

a global variable should have exactly one defining instance, in one

place in one source file. If the same variable is to be used anywhere

else (i.e. in some other source file or files), the variable is declared in

those other file(s) with an external declaration, which is not a

defining instance. The external declaration says, “hey, compiler, here's

the name and type of a global variable I'm going to use, but don't

define it here, don't allocate space for it; it's one that's defined

somewhere else, and I'm just referring to it here.” If you accidentally

have two distinct defining instances for a variable of the same name,

the compiler (or the linker) will complain that it is “multi-defined”.

It is also possible to have a variable which is global in the sense that it

is declared outside of any function, but private to the one source file

it's defined in. Such a variable is visible to the functions in that source

file but not to any functions in any other source files, even if they try to

issue a matching declaration.

You get any extra control you might need over visibility and lifetime,

and you distinguish between defining instances and external

declarations, by using storage classes. A storage class is an extra

keyword at the beginning of a declaration which modifies the

declaration in some way. Generally, the storage class (if any) is the

first word in the declaration, preceding the type name.

We said that, by default, local variables had automatic duration. To

give them static duration (so that, instead of coming and going as

the function is called, they persist for as long as the function does),

you precede their declaration with the static keyword:

 static int i;

By default, a declaration of a global variable (especially if it specifies

an initial value) is the defining instance. To make it an external

declaration, of a variable which is defined somewhere else, you

precede it with the keyword extern:

 extern int j;

 Chapter 6: Functions and Program Structure 90

Finally, to arrange that a global variable is visible only within its

containing source file, you precede it with the static keyword:

 static int k;

Notice that the static keyword can do two different things: it adjusts

the duration of a local variable from automatic to static, or it adjusts

the visibility of a global variable from truly global to private-to-the-

file.

To summarize, we've talked about two different attributes of a

variable: visibility and duration. These are orthogonal, as shown in

Table ‎6-1.

Table ‎6-1: Variables Visibility and Lifetime

 Duration:

Visibility: Automatic Static

Local normal local variables static local variables

Global N/A normal global variables

We can distinguish between file-scope global variables and truly

global variables, based on the presence or absence of the static

keyword.

We can distinguish between external declarations and defining

instances of global variables, based on the presence or absence of

the extern keyword.

 Introduction to Programming 91

6.3.1 Default Initialization

The duration of a variable (whether static or automatic) also affects its

default initialization.

If you do not explicitly initialize them, automatic-duration

variables (that is, local, non-static ones) are not guaranteed

to have any particular initial value; they will typically contain

garbage. It is therefore a fairly serious error to attempt to use the value

of an automatic variable which has never been initialized or assigned

to: the program will either work incorrectly, or the garbage value may

just happen to be “correct” such that the program appears to work

correctly! However, the particular value that the garbage takes on can

vary depending literally on anything: other parts of the program,

which compiler was used, which hardware or operating system the

program is running on. So you hardly want to say that a program

which uses an uninitialized variable “works”; it may seem to work, but

it works for the wrong reason, and it may stop working tomorrow.

Static-duration variables (global and static local), on the other hand,

are guaranteed to be initialized to 0 (zero) if you do not use an

explicit initializer in the definition.

6.3.2 Examples

Listing ‎6-2 provides an example demonstrating almost everything

we've seen so far in this section. Here we have six variables, three

declared outside and three declared inside of the function f().

globalvar is a global variable. The declaration we see is its defining

instance that includes an initial value (What about if we remove this

initialization?). globalvar can be used anywhere in this source file,

and it could be used in other source files, too (as long as

corresponding external declarations are issued in those other source

files).

anotherglobalvar is a second global variable. It is not defined here;

the defining instance for it (and its initialization) is somewhere else

(another source file).

 Chapter 6: Functions and Program Structure 92

Listing ‎6-2: Example of Variables Visibility

privatevar is a “private” global variable. It can be used anywhere

within this source file, but functions in other source files cannot access

it, even if they try to issue external declarations for it. Since it has

static duration and receives no explicit initialization, privatevar

will be initialized to 0.

localvar is a local variable within the function f(). It can be accessed

only within the function f(). (If any other part of the program declares

a variable named “localvar”, that variable will be distinct from the

one we're looking at here). localvar is conceptually “created” each

time f() is called, and disappears when f() returns. Any value which

was stored in localvar last time f() was running will be lost and will

not be available next time f() is called. Furthermore, since it has no

explicit initializer, the value of localvar will in general be garbage

each time f() is called.

localvar2 is also local, and everything that we said about localvar

applies to it, except that since its declaration includes an explicit

initializer, it will be initialized to 2 each time f() is called.

Finally, persistentvar is again local to f(), but it does maintain its

value between calls to f(). It has static duration but no explicit

initializer, so its initial value will be 0.

1. int globalvar = 1;

2. extern int anotherglobalvar;

3. static int privatevar;

4. f(){
5. int localvar;

6. int localvar2 = 2;

7. static int persistentvar;
8. }

 Introduction to Programming 93

Don't worry about static variables for now if they don't make sense to

you; they're a relatively sophisticated concept, which you won't need

to use at first.

6.4 Exercises

1) What are the four important parts of a function? Which
three does a caller need to know?

2) What is the difference between a defining instance and
an external declaration?

3) What is the difference between static and automatic
duration?

4) Given the following code fragment, what is the value
of x after the function count() is called and executed

twice?

 int count(){

 static int x = 0;

 x += 1;

 }

 a) 0

 b) 1

 c) 2

 d) more than 2

5) What is the purpose of the term 'return type'

in a function definition?

 a) To specify the data type of the function.

 b) To specify the type of data the function returns.

 c) to specify the type of variables used as

 parameters.

 d) To specify the type of variables passed to the

 function.

 Chapter 6: Functions and Program Structure 94

6) Which one of the following best describes a function
call?

 a) Identifies the type of data returned from a

 function and the function's storage class.

 b) Defines the operation a function must perform.

 c) Identifies the function parameters.

 d) States the name of the function and passes

 arguments.

7) Which one of the following best describes a function
definition?

a) Allocates a storage location for the return
value.

b) Contains the statements that indicate the
function name and parameters to be used in

processing.

c) Calls a predefined function and passes the
necessary arguments.

d) Tells the compiler which function you are
using.

8) The arguments passed to a function are

 a) global variables visible to all functions

 b) local variables to the receiving function

 c) not allowed to be used by the receiving function

 d) available only in ANSI C

9) Write code to sum the elements of an array of int.

(Write it as a function) Use it to sum the array

(write a main for the program):

int a[] = {1, 2, 3, 4, 5, 6};

 Introduction to Programming 95

10) Write a loop to call the multbytwo() function (Listing

 6-1: Example of a User-defined Function) on the

numbers 1-10.

11) Write a square() function and use it to print the

squares of the numbers 1-10:

1 1

2 4

3 9

4 16

...

9 81

10 100

12) Write the function
 void printnchars(int ch, int n)

which is supposed to print the character ch, n times.

(Remember that %c is the printf format to use for

printing characters.) For example, the call

printnchars('x', 5) would print 5 x's. Use this

function to rewrite the triangle-printing program of

assignment 26 (exercises of Chapter 4).

13) Write a function to compute the factorial of a number,
and use it to print the factorials of the numbers 1-7.

14) Write a function celsius() to convert degrees

Fahrenheit to degrees Celsius. (The conversion formula

is °C = 5/9 * (°F - 32).) Use it to print a

Fahrenheit-to-Centigrade table for -40 to 220 degrees

Fahrenheit, in increments of 10 degrees. (Remember

that %f is the printf format to use for printing

floating-point numbers. Also, remember that the

integer expression 5/9 gives 0, so you won't want to

use integer division.)

15) Write two functions
 randrange(int n)

which returns random integers from 1 to n, or the

function

 int randrange2(int m, int n)

which returns random integers in the range m to n.

The header file <stdlib.h> defines a constant, RAND_MAX,

which is the maximum number returned by the rand()

function. A better way of reducing the range of the

rand() function is like this:

 rand() / (RAND_MAX / N + 1)

(where N is the range of numbers you want).

 Chapter 7: Basic Input and Output 96

 Chapter 7

7 Basic Input and Output

So far, we've been using printf to do output, and we haven't had a way

of doing any input. In this chapter, we'll learn a bit more about printf,

and we'll begin learning about character-based input and output,

reading command lines and strings.

7.1 “printf” Function

printf's name comes from print formatted. It generates output

under the control of a format string (its first argument) which

consists of literal characters to be printed and also special character

sequences (format specifiers) that request that other arguments be

fetched, formatted, and inserted into the string. Our very first program

was nothing more than a call to printf, printing a constant string:

 printf("Hello, world!\n");

Our second program also featured a call to printf:

 printf("i is %d\n", i);

In that case, whenever printf prints the string "i is %d", it did not

print it as it is; it replaces the two special characters %d with the value

of the variable i. There are quite a number of format specifiers for

printf. Table ‎7-1 lists the basic ones.

It is also possible to specify the width and precision of numbers and

strings as they are inserted. For example, a notation like %3d means to

print an int in a field at least 3 spaces wide; a notation like %5.2f

means to print a float or double in a field at least 5 spaces wide, with

two places to the right of the decimal.

 Introduction to Programming 97

Table ‎7-1: Format Specifiers

Format

Specifier

Function

%d print an int argument in decimal

%ld print a long int argument in decimal

%c print a character

%s print a string

%f print a float or double argument

%e same as %f, but use exponential notation

%o print an int argument in octal (base 8)

%x print an int argument in hexadecimal (base 16)

%% print a single %

To illustrate with a few more examples, the call

printf("%c %2d %f %e %s %d%%\n", '1', 2, 3.14, 56000000.,

 "eight", 9);

would print

 1 02 3.140000 5.600000e+07 eight 9%

The call

 printf("%d %o %x\n", 100, 100, 100);

would print

 100 144 64

 Chapter 7: Basic Input and Output 98

Successive calls to printf just build up the output a piece at a time, so

the calls

 printf("Hello, ");

 printf("world!\n");

would also print Hello, world! (on one line of output).

Earlier we learned that C represents characters internally as small

integers corresponding to the characters' values in the machine's

character set (typically ASCII). This means that there isn't really much

difference between a character and an integer in C; most of the

difference is in whether we choose to interpret an integer as an integer

or a character. printf is one place where we get to make that choice:

%d prints an integer value as a string of digits representing its decimal

value, while %c prints the character corresponding to a character set

value. So the lines

 char c = 'A';

 int i = 97;

 printf("c = %c, i = %d\n", c, i);

would print c as the character A and i as the number 97. But if, on the

other hand, we called

 printf("c = %d, i = %c\n", c, i);

we'd see the decimal value 65 (printed by %d) of the character 'A',

followed by the character (‘a’) that happens to have the decimal value

97.

You have to be careful when calling printf. It has no way of

knowing how many arguments you've passed it or what their

types are other than by looking for the format specifiers in the format

string. If there are more format specifiers (that is, more % signs) than

there are arguments, or if the arguments have the wrong types for the

format specifiers, printf can misbehave badly, often printing

nonsense numbers or (even worse) numbers which mislead you into

thinking that some other part of your program is broken.

 Introduction to Programming 99

7.2 Character Input and Output

Unless a program can read some input, it's hard to keep it from doing

exactly the same thing every time it's run, and thus being rather boring

after a while. The most basic way of reading input is by calling the

function getchar. getchar reads one character from the “standard

input” which is usually the user's keyboard, but which can sometimes

be redirected by the operating system. getchar returns (rather

obviously) the character it reads, or, if there are no more characters

available, the special value EOF (end of file).

A companion function is putchar that writes one character to the

“standard output” (usually the user's screen). Using these two

functions, we can write a very basic program as the one shown in

Listing ‎7-1 to copy the input, a character at a time, to the output:

Listing ‎7-1: A Program to Copy Input to Output

This code is straightforward, and I encourage you to type it in and try

it out. It reads one character, and if it is not the EOF code, enters a

while loop, printing one character and reading another, as long as the

character read is not EOF. This is a straightforward loop, although

1. #include <stdio.h>

2. /* copy input to output */

3. int main(){

4. int c;

5. c = getchar();

6. while(c != EOF){

7. putchar(c);

8. c = getchar();

9. }

10. return 0;

11. }

 Chapter 7: Basic Input and Output 100

there's one mystery surrounding the declaration of the variable c: if it

holds characters, why is it an int?

We said that a char variable could hold integers corresponding to

character set values, and that an int could hold integers of more

arbitrary values (up to +-32767). Since most character sets contain a

few hundred characters, an int variable can in general comfortably

hold all char values. Therefore, there's nothing wrong with declaring c

as an int. But in fact, it's important to do so, because getchar can

return every character value, plus that special, non-character value

EOF, indicating that there are no more characters. Type char is only

guaranteed to be able to hold all the character values; it is not

guaranteed to be able to hold this “no more characters” value without

possibly mixing it up with some actual character value. Therefore, you

should always remember to use an int for anything you assign

getchar's return value to.

When you run the character copying program, and it begins copying

its input (your typing) to its output (your screen), you may find

yourself wondering how to stop it. It stops when it receives end-of-

file (EOF), but how do you send EOF? The answer depends on what kind

of computer you're using. On Linux systems, it's almost always

[control-D]. On MS-DOS machines, it's [control-Z] followed by the

[RETURN] key.

Finally, don't be disappointed the first time you run the character

copying program. You'll type a character, and see it on the screen right

away, and assume it's your program working, but it's only your

computer echoing every key you type, as it always does. When you hit

[RETURN], a full line of characters is made available to your program.

It then zips several times through its loop, reading and printing all the

characters in the line in quick succession.

In other words, when you run this program, it will probably seem to

copy the input a line at a time, rather than a character at a time. You

may wonder how a program could instead read a character right away,

without waiting for the user to hit [RETURN]. That's an excellent

question, but unfortunately the answer is beyond the scope of our

 Introduction to Programming 101

discussion here (but for sure you are free to search the Internet for a

solution).

Stylistically, the character-copying program above can be said to have

one minor flaw: it contains two calls to getchar, one which reads the

first character and one which reads (by virtue of the fact that it's in the

body of the loop) all the other characters. This seems inelegant and

perhaps unnecessary, and it can also be risky: if there were more

things going on within the loop, and if we ever changed the way we

read characters, it would be easy to change one of the getchar calls but

forget to change the other one. Is there a way to rewrite the loop so

that there is only one call to getchar, responsible for reading all the

characters? Is there a way to read a character, test it for EOF, and

assign it to the variable c, all at the same time?

Yes, there is. It relies on the fact that the assignment operator, =, is

just another operator in C. An assignment is not (necessarily) a

standalone statement; it is an expression, and it has a value (the value

that's assigned to the variable on the left-hand side), and it can

therefore participate in a larger, surrounding expression. Therefore,

most C programmers would write the character-copying loop like this:

 while((c = getchar()) != EOF)

 putchar(c);

What does this mean? The function getchar is called, as before, and its

return value is assigned to the variable c. Then the value is

immediately compared against the value EOF. Finally, the true/false

value of the comparison controls the while loop: as long as the value is

not EOF, the loop continues executing, but as soon as an EOF is

received, no more trips through the loop are taken, and it exits. The

net result is that the call to getchar happens inside the test at the top

of the while loop, and doesn't have to be repeated before the loop or

within the loop. The extra parentheses around

 (c = getchar())

are important, and are there because the precedence of the !=

operator is higher than that of the = operator. If we wrote:

 Chapter 7: Basic Input and Output 102

 while(c = getchar() != EOF) /* WRONG */

the compiler would interpret it as

 while(c = (getchar() != EOF))

That is, it would assign the result of the != operator to the variable c,

which is not what we want.

7.2.1 Reading Lines

It's often convenient for a program to process its input not a character

at a time but rather a line at a time, that is, to read an entire line of

input and then act on it all at once. We're going to learn more about

character input and about writing functions in general by writing our

own function to read one line as shown in Listing ‎7-2.

Listing ‎7-2: Function to Read One Line

1. #include <stdio.h>
2. /* Read one line from standard input, */
3. /* copying it to an array (no more than max chars). */
4. /* Returns line length, or 0 for empty line, or EOF for

end-of-file. */

5. int getline(char line[], int max){
6. int nch = 0, c=0;
7. max = max - 1; /* leave room for '\0' */

8. while((c = getchar()) != EOF){
9. if(c == '\n')
10. break;

11. if(nch < max){
12. line[nch] = c;
13. nch = nch + 1;
14. }
15. }
16. if(c == EOF && nch == 0)
17. return EOF;
18. line[nch] = '\0';
19. return nch;
20. }

 Introduction to Programming 103

As the comments in lines from 2 to 4 indicate, this function will read

one line of input from the standard input, placing it into the line

array. The size of the line array is given by the max argument; the

function will never write more than max characters into line.

The main body of the function is a getchar loop, much as we used in

the character-copying program. In the body of this loop, however,

we're storing the characters in an array (rather than immediately

printing them out). Also, we're only reading one line of characters,

then stopping and returning. There are several new things to notice

here.

First of all, the getline function accepts an array as a

parameter. As we've said, array parameters are an

exception to the rule that functions receive copies of their arguments--

in the case of arrays, the function does have access to the actual array

passed by the caller, and can modify it. Since the function is accessing

the caller's array, not creating a new one to hold a copy, the function

does not have to declare the argument array's size; it's set by the caller

(Thus, the brackets in char line[]' are empty). However, so that we

won't overflow the caller's array by reading too long a line into it, we

allow the caller to pass along the size of the array that we promise not

to exceed.

Second, we see an example of the break statement. The top of the loop

looks like our earlier character-copying loop--it stops when it reaches

EOF--but we only want this loop to read one line, so we also stop (that

is, break out of the loop) when we see the \n character signifying end-

of-line.

We haven't learned about the internal representation of strings yet,

but it turns out that strings in C are simply arrays of

characters, which is why we are reading the line into an array of

characters. The end of a string is marked by the special character,

'\0'. To make sure that there's always room for that character, on our

way in we subtract 1 from max, the argument that tells us how many

characters we may place in the line array. When we're done reading

 Chapter 7: Basic Input and Output 104

the line, we store the end-of-string character '\0' at the end of the

string we've just built in the line array.

Finally, there's one part in the code which isn't too important for our

purposes now but which you may wonder about: it's arranged to

handle the possibility that a few characters (i.e. the apparent

beginning of a line) are read, followed immediately by an EOF, without

the usual \n end-of-line character. (That's why we return EOF only if we

received EOF and we hadn't read any characters first.)

In any case, the function returns the length (number of characters) of

the line it read, not including the \n. (Therefore, it returns 0 for an

empty line.) Like getchar, it returns EOF when there are no more lines

to read. (It happens that EOF is a negative number, so it will never

match the length of a line that getline has read.)

Here is an example of a test program which calls getline, reading the

input a line at a time and then printing each line back out:

#include <stdio.h>

extern int getline(char [], int);

main()
{

char line[256];

while(getline(line, 256) != EOF)
 printf("you typed \"%s\"\n", line);

return 0;

}

The notation char [] in the function prototype for getline says that

getline accepts as its first argument an array of char. When the

program calls getline, it is careful to pass along the actual size of the

array. You might notice a potential problem: since the number 256

appears in two places, if we ever decide that 256 is too small, and that

we want to be able to read longer lines, we could easily change one of

the instances of 256, and forget to change the other one. (Can you

think about a solution to avoid this sort of problem?)

 Introduction to Programming 105

7.2.2 Reading Numbers

The getline function of the previous subsection reads one line from

the user, as a string. What if we want to read a number? One

straightforward way is to read a string as before, and then immediately

convert the string to a number. The standard C library contains a

number of functions for doing this. The simplest to use are atoi(),

which converts a string to an integer, and atof(), which converts a

string to a floating-point number. (Both of these functions are

declared in the header <stdlib.h>, so you should #include that

header at the top of any file using these functions.) You could read an

integer from the user like this:

 #include <stdlib.h>

 char line[256];

 int n;

 printf("Type an integer:\n");

 getline(line, 256);

 n = atoi(line);

Now the variable n contains the number typed by the user. (This

assumes that the user did type a valid number, and that getline did not

return EOF). Reading a floating-point number is similar:

 #include <stdlib.h>

 char line[256];

 double x;

 printf("Type a floating-point number:\n");

 getline(line, 256);

 x = atof(line);

Another way of reading in numbers, which you're likely to see in other

books on C, involves the scanf function, but it has several problems, so

we won't discuss it here.

 Chapter 7: Basic Input and Output 106

7.3 Strings

Strings in C are represented by arrays of characters. The end of

the string is marked with a special character, the null character,

which is simply the character with the value 0. The null or string-

terminating character is represented by another character escape

sequence, \0. (We've seen it once already, in the getline function). C

has few built-in facilities for manipulating strings.

Notice that whenever we write a string, enclosed in double

quotes, C automatically creates an array of characters for us,

containing that string, terminated by the \0 character. For example,

we can declare and define an array of characters, and initialize it with

a string constant:

 char string[] = "Hello, world!";

In this case, we can leave out the dimension of the array, since the

compiler can compute it for us based on the size of the initializer (14,

including the terminating \0). This is the only case where the compiler

sizes a string array for us, however; in other cases, it will be necessary

that we decide how big the arrays and other data structures we use to

hold strings are. To do anything else with strings, we must typically

call functions. The C library contains a few basic string manipulation

functions, and to learn more about strings, we'll be looking at how

these functions might be implemented.

Since C never lets us assign entire arrays, we use the strcpy function

to copy one string to another:

 #include <string.h>

 char string1[] = "Hello, world!";
 char string2[20];

 strcpy(string2, string1);

The destination string is strcpy's first argument, so that a call to

strcpy mimics an assignment expression (with the destination on the

left-hand side). Notice that we had to allocate string2 big enough to

hold the string that would be copied to it. Also, at the top of any source

 Introduction to Programming 107

file where we're using the standard library's string-handling functions

(such as strcpy) we must include the line

 #include <string.h>

that contains external declarations for these functions.

Since C won't let us compare entire arrays, either, we must call a

function to do that, too. The standard library's strcmp function

compares two strings, and returns 0 if they are identical, or a negative

number if the first string is alphabetically “less than” the second

string, or a positive number if the first string is “greater.” (Roughly

speaking, what it means for one string to be “less than” another is that

it would come first in a dictionary or a telephone book). Here is an

example:

 char string3[] = "this is";
 char string4[] = "a test";

 if(strcmp(string3, string4) == 0)
 printf("strings are equal\n");
 else
 printf("strings are different\n");

This code fragment will print ‚strings are different‛.

Another standard library function is strcat that concatenates strings.

It does not concatenate two strings together and give you a third, new

string; what it really does is append one string onto the end of

another. (If it gave you a new string, it would have to allocate memory

for it somewhere, and the standard library string functions generally

never do that for you automatically). Here's an example:

 char string5[20] = "Hello, ";
 char string6[] = "world!";

 printf("%s\n", string5);

 strcat(string5, string6);

 printf("%s\n", string5);

 Chapter 7: Basic Input and Output 108

The first call to printf prints ‚Hello, ‚, and the second one prints

‚Hello, world!‛, indicating that the contents of string6 have been

tacked on to the end of string5. Notice that we declared string5 with

extra space, to make room for the appended characters.

If you have a string and you want to know its length, you can call

strlen that returns the length of the string (i.e. the number of

characters in it), not including the \0:

 char string7[] = "abc";

 int len = strlen(string7);

 printf("%d\n", len);

Finally, you can print strings out with printf using the %s format

specifier, as we've been doing in these examples already (e.g.

printf("%s\n", string5);).

Since a string is just an array of characters, all of the string-handling

functions we've just seen can be written quite simply, using no

techniques more complicated than the ones we already know. In fact,

it's quite instructive to look at how these functions might be

implemented. Here is a version of strcpy:

mystrcpy(char dest[], char src[]){
int i = 0;

while(src[i] != '\0'){
 dest[i] = src[i];
 i++;
}

dest[i] = '\0';

}

We've called it mystrcpy instead of strcpy so that it won't clash with

the version that's already in the standard library. Its operation is

simple: it looks at characters in the src string one at a time, and as

long as they're not \0, assigns them, one by one, to the corresponding

positions in the dest string. When it's done, it terminates the dest

string by appending a \0. (After exiting the while loop, i is

 Introduction to Programming 109

guaranteed to have a value one greater than the subscript of the last

character in src).

Here is a version of strcmp:

mystrcmp(char str1[], char str2[]){

 int i = 0;

 while(1){
 if(str1[i] != str2[i])
 return str1[i] - str2[i];
 if(str1[i] == '\0' && str2[i] == '\0')
 return 0;
 i++;
 }
}

Characters are compared one at a time. If two characters in one

position differ, the strings are different, and we are supposed to return

a value less than zero if the first string (str1) is alphabetically less

than the second string. Since characters in C are represented by their

numeric character set values, and since most reasonable character sets

assign values to characters in alphabetical order, we can simply

subtract the two differing characters from each other: the expression

str1[i] - str2[i] will yield a negative result if the i'th character of

str1 is less than the corresponding character in str2. (As it turns out,

this will behave a bit strangely when comparing upper- and lower-case

letters, but it's the traditional approach, which the standard versions

of strcmp tend to use.) If the characters are the same, we continue

around the loop, unless the characters we just compared were (both)

\0, in which case we've reached the end of both strings, and they were

both equal. Notice that we used what may at first appear to be an

infinite loop--the controlling expression is the constant 1, which is

always true. What actually happens is that the loop runs until one of

the two return statements breaks out of it (and the entire function).

Note also that when one string is longer than the other, the first test

will notice this (because one string will contain a real character at the

[i] location, while the other will contain \0, and these are not equal)

and the return value will be computed by subtracting the real

 Chapter 7: Basic Input and Output 110

character's value from 0, or vice versa. (Thus the shorter string will be

treated as “less than” the longer.)

Finally, here is a version of strlen:

int mystrlen(char str[]){
 int i;

 for(i = 0; str[i] != '\0'; i++)
 {}

 return i;

 }

In this case, all we have to do is find the \0 that terminates the string,

and it turns out that the three control expressions of the for loop do all

the work; there's nothing left to do in the body. Therefore, we use an

empty pair of braces {} as the loop body. Equivalently, we could use a

null statement, which is simply a semicolon:

for(i = 0; str[i] != '\0'; i++) ;

Notice that there is a big difference between a character and a string,

even a string which contains only one character (other than the \0).

For example, 'A' is not the same as "A". To drive home this point, let's

illustrate it with a few examples. If you have a string:

 char string[] = "hello, world!";

you can modify its first character by saying

 string[0] = 'H';

Since you're replacing a character, you want a character constant, 'H'.

It would not be right to write

 string[0] = "H"; /* WRONG */

because "H" is a string (an array of characters), not a single character.

(The destination of the assignment, string[0], is a char, but the right-

hand side is a string; these types don't match.)

On the other hand, when you need a string, you must use a string. To

print a single newline, you could call

 Introduction to Programming 111

 printf("\n");

It would not be correct to call

 printf('\n'); /* WRONG */

printf always wants a string as its first argument. As one final

example, putchar wants a single character, so putchar('\n') would be

correct, and putchar("\n") would be incorrect.

We must also remember the difference between strings and integers.

If we treat the character '1' as an integer, perhaps by saying:

 int i = '1';

we will probably not get the value 1 in i; we'll get the value of the

character '1' in the machine's character set. (In ASCII, it's 49) When

we do need to find the numeric value of a digit character (or to go the

other way, to get the digit character with a particular value) we can

make use of the fact that, in any character set used by C, the values for

the digit characters, whatever they are, are contiguous. In other words,

no matter what values '0' and '1' have, '1' - '0' will be 1 (and, obviously,

'0' - '0' will be 0). So, for a variable c holding some digit character, the

expression

 c - '0'

gives us its value. (Similarly, for an integer value i, i + '0' gives us

the corresponding digit character, as long as 0 <= i <= 9)

Just as the character '1' is not the integer 1, the string "123" is not the

integer 123. When we have a string of digits, we can convert it to the

corresponding integer by calling the standard function atoi:

 char string[] = "123";
 int i = atoi(string);
 int j = atoi("456");

 Chapter 7: Basic Input and Output 112

7.4 Exercises

1) What output does each of these produce?

 a) putchar('a');

 b) putchar('\007');

 c) putchar('\n');

 d) putchar('\t');

 e) n = 32; putchar(n);

 f) putchar('\"');

2) For the different values of n, what is the output?

 printf("%x %c %o %d",n,n,n,n);

 a) n = 67

 b) n = 20

 c) n = 128

 d) n = 255

 e) n = 100

3) What is wrong with each of these?

 a) #include stdio.h

 b) putchar('/n');

 c) printf("\nPhone Number: (%s) %s",phone_number);

 d) getch(ch);

 e) putch() = ch;

 Introduction to Programming 113

4) Given the following character array, what does
state[4] reference?

 char state[5][3] = {"AA","BB","CC","DD","EE"};

 a) The address of the first character in the string CC.

 b) The address of the first character in the string DD.

 c) The address of the first character in the string EE.

 d) None of the above,

5) Given the following character array, what does the
state[3][1] reference?

 char state[5][3] = {"AT","BU","CV","DX","EY"};

 a) The letter X.

 b) The letter Y.

 c) The letter V.

 d) The letter D.

6) If Charles is compared to Charley, using the strcmp()
function, the value returned is

 a) 0

 b) > 0

 c) < 0

 d) -1

7) What is the purpose of the strcpy() function?

 a) To assign the value of string2 to stirng1.

 b) To determine if string2 is larger than string1.

 c) To assign the value of string1 to string2.

 d) To determine if string1 is larger than string2.

 Chapter 7: Basic Input and Output 114

8) How many bytes of memory would the compiler allocate
for the following statement?

 char names[][5] = {"Ali ","Amal","Mai "};

 a) 15

 b) 24

 c) 4

 d) 10

9) What would the expression
 c = getchar() != EOF

 do?

10) Why must the variable used to hold getchar's return
value be type int?

11) Write a program which reads lines (using getline),

converts each line to an integer using atoi, and

computes the average of all the numbers read. (Like

the example programs in the chapter, it should

determine the end of by checking for EOF). Remember

that integer division truncates, so you'll have to

declare some of your variables as float or double.

12) Write a rudimentary checkbook balancing program. It

will use getline to read a line, which will contain

either the word "check" or "deposit". The next line

will contain the amount of the check or deposit. After

reading each pair of lines, the program should compute

and print the new balance. You can declare the

variable to hold the running balance to be type float,

and you can use the function atof (also in the

standard library) to convert an amount string read

by getline into a floating-point number. When the

program reaches end-of-file while

reading "check" or "deposit", it should exit. (In

outline, the program will be somewhat similar to the

average-finding program.)

For example, given the input

 deposit

 100

 check

 Introduction to Programming 115

 12.34

 check

 49.00

 deposit

 7.01

the program should print something like

 balance: 100.00

 balance: 87.66

 balance: 38.66

 balance: 45.67

13) Write a program to read its input, one character at a
time, and print each character and its decimal value.

14) Write a program to read its input, one line at a time,
and print each line backwards. To do the reversing,

write a function

 void reverse(char line[], int len)

 {

 ...

 }

 Chapter 8: User Defined Types: Structures 116

Chapter 8

8 User Defined Types: Structures

So far, we have been using C's basic types (char, int, long int, double,

etc.) and a few derived types (arrays of basic types, and functions

returning basic types). In this chapter, we'll learn about another way

to derive more complex types: by building user-defined types

(structures).

User-defined data types have a little bit restriction: you don't have

ultimate flexibility; you can define your own data types any way you

want, as long as they're collections of other types. What you couldn't

define would be data types that held, say, tractors or teddy bears,

because of course computers have no way of holding those objects.

You're ultimately restricted to the primitive types of data that

computers can represent, and C's basic types cover most of those.

Very roughly speaking, a structure is a little bit like an array. An array

is a collection of associated values, all of the same type. A structure is a

collection of associated values, but the values can all have different

types.

8.1 Structures

The basic user-defined data type in C is the structure, or struct.

Defining structures is a two-step process: first you define a

“template” which describes the new type, and then you declare

variables having the new type (or functions returning the new type,

etc.).

As a simple example, suppose we wanted to define our own type for

representing complex numbers. A complex number consists of a real

and imaginary part, where the imaginary part is some multiple of the

square root of negative 1. (You don't have to understand complex

numbers to understand this example; you can think of the real and

imaginary parts as the x and y coordinates of a point on a plane). Since

 Introduction to Programming 117

a complex number consists of a real and imaginary part, we need a

way of holding both these quantities in one data type, and a structure

will do just the trick. Here is how we might declare our complex type:

 struct complex{

 double real;

 double imag;

 };

A structure declaration consists of up to four parts, of which we can

see three in the example above. The first part is the keyword struct

which indicates that we are talking about a structure. The second part

is a name or tag by which this structure (that is, this new data type)

will be known. The third part is a list of the structure's members

(also called components or fields). This list is enclosed in braces {},

and contains what look like the declarations of ordinary variables.

Each member has a name and a type, just like ordinary variables, but

here we are not declaring variables; we are setting up the structure of

the structure by defining the collection of data types which will make

up the structure. Here we see that the complex structure will be made

up of two members, both of type double, one named real and one

named imag.

It's important to understand that what we've defined here is just the

new data type; we have not yet declared any variables of this new type!

The name complex (the second part of the structure declaration) is not

the name of a variable; it's the name of the structure type. The names

real and imag are not the names of variables; they're identifiers for the

two components of the structure. A structure template (in this case

complex) does not occupy any memory space and does not have an

address, it is simply a description of a new data type.

Storage is allocated for the structure when a variable of that structure

type is declared. We declare variables of our new complex type with

declarations like these:

 struct complex c1;

or

 Chapter 8: User Defined Types: Structures 118

 struct complex c2, c3;

These look almost like our previous declarations of variables having

basic types, except that instead of a type keyword like int or double,

we have the two-word type name struct complex. The keyword struct

indicates that we're talking about a structure, and the identifier

complex is the name for the particular structure we're talking about.

c1, c2, and c3 will all be declared as variables of type struct complex;

each one of them will have real and imaginary parts buried inside

them.

Notice that when we define structures in this way we have not quite

defined a new type on a par with int or double. We cannot say:

 complex c1; /* WRONG */

The name complex does not become a full-fledged type name like int

or double; it's just the name of a particular structure, and we must use

the keyword struct and the name of a particular structure (e.g.

complex) to talk about that structure type. (in C++ a new structure

does automatically become a full-fledged type)

I said that a structure definition consisted of up to four parts. We saw

the first three of them in the first example; the fourth part of a full

structure declaration is simply a list of variables, which are to be

declared as having the structure type at the same time as the structure

itself is defined. For example, if we had written

 struct complex{

 double real;

 double imag;

 } c1, c2, c3;

we would have defined the type struct complex, and right away

declared three variables c1, c2, and c3 all of type struct complex.

Because a structure definition can also declare variables, it's

important not to forget the semicolon at the end of a structure

definition. If you accidentally write:

 Introduction to Programming 119

 struct complex{

 double real;

 double imag;

 }

without a semicolon, the compiler will keep looking for something

later in the file and try to declare it as being of type struct complex,

which will either result in a confusing error message or (if the

compiler succeeds) a confusing miss-declaration.

8.2 Accessing Members of Structures

We said that a structure was a little bit like an array: a collection of

members (elements). We access the elements of an array by using a

numeric index in square brackets []. We access the elements of a

structure by name, using the structure selection operator which

is a dot (a period). The structure selection operator is a little like the

other binary operators we've seen, but much more restricted: on its

left must be a variable or object of structure type, and on its right must

be the name of one of the members of that structure. For example, if

c1 is a variable of type struct complex as declared in the previous

section, then c1.real is its real part and c1.imag is its imaginary part.

Like indexed array references, references to the members of structure

variables (using the structure selection operator) can appear

anywhere, either on the right or left side of assignment operators. We

could say:

 c1.real = 1

to set the real part of c1 (that is, the real member within c1) to 1, or:

 c1.imag = c2.imag

to fetch the imaginary part of c2 and assign it to the imaginary part of

c1, or:

 Chapter 8: User Defined Types: Structures 120

 c1.real = c2.real + c3.real

to take the real parts of c2 and c3, add them together, and assign the

result to the real part of c1.

8.3 Operations on Structures

There are a relatively small number of operations which C directly

supports on structures. As we've seen, we can define structures,

declare variables of structure type, and select the members of

structures. We can also assign entire structures: the expression

 c1 = c2

would assign all of c2 to c1 (both the real and imaginary parts,

assuming the preceding declarations). We can also pass structures as

arguments to functions, and declare and define functions which return

structures. But to do anything else, we typically have to write our own

code (often as functions). For example, we could write a function to

add two complex numbers:

 struct complex

 cpx_add(struct complex c1, struct complex c2)

 {

 struct complex sum;

 sum.real = c1.real + c2.real;

 sum.imag = c1.imag + c2.imag;

 return sum;

 }

We could then say things like

 c1 = cpx_add(c2, c3)

One more thing you can do with a structure is initialize a structure

variable while declaring it. As for array initializations, the initializer

consists of a comma-separated list of values enclosed in braces {}:

 Introduction to Programming 121

 struct complex c1 = {1, 2};

 struct complex c2 = {3, 4};

Of course, the type of each initializer in the list must be compatible

with the type of the corresponding structure member.

8.3.1 Nested Structures

A structure variable can be a member of another structure template.

struct vital{

 int age;

 int height;

};

struct home{

 char name[12];

 char address[20];

};

struct person{

 struct vital emp;

 struct home place;

} employ;

In order to access a member of one of the nested structures, the dot

operator is used until the lowest member is reached in the structure

hierarchy:

printf(‚My name is: %s ‚, employ.place.name);

printf(‚My age is: %d ‚, employ.emp.age);

 Chapter 8: User Defined Types: Structures 122

8.3.2 Arrays of Structures

Like any other data type in C, a variable of a structure type can be

arrayed.

 struct person

 {

 struct vital emp;

 struct home place;

 } stats[100];

The above declaration would allow for the storage of 100 items of type

people. Any specific item could be referenced as:

 stats[indx].place.name

 stats[indx].emp.age

Notice stats is the arrayed item, and requires the array operator, [].

8.4 Define a Type New Name: typedef

The C programming language provides a keyword called typedef,

which you can use to give a type a new name. Following is an example

to define a term BYTE for one-byte numbers:

typedef unsigned char BYTE;

After this type definitions, the identifier BYTE can be used as an

abbreviation for the type unsigned char, for example:

BYTE b1, b2;

By convention, uppercase letters are used for these definitions to

remind the user that the type name is really a symbolic abbreviation,

but you can use lowercase, as follows:

typedef unsigned char byte;

 Introduction to Programming 123

You can use typedef to give a name to user defined data type as well.

For example you can use typedef with structure to define a new data

type and then use that data type to define structure variables directly

as follows:

#include <stdio.h>

#include <string.h>

typedef struct Books{

 char title[50];

 char author[50];

 char subject[100];

 int book_id;

} Book;

int main()

{

 Book book;

 strcpy(book.title, "C Programming");

 strcpy(book.author, "Mahmoud El-Gayyar");

 strcpy(book.subject, "C Programming Tutorial");

 book.book_id = 6495407;

 printf("Book title : %s\n", book.title);

 printf("Book author : %s\n", book.author);

 printf("Book subject : %s\n", book.subject);

 printf("Book book_id : %d\n", book.book_id);

 return 0;

}

When the above code is compiled and executed, it produces the

following result:

Book title : C Programming

Book author : Mahmoud El-Gayyar

Book subject : C Programming Tutorial

Book book_id : 6495407

 Chapter 8: User Defined Types: Structures 124

8.5 Exercises
1) What are the four parts of a structure definition?

2) Write a student ranking program. A student has 4

subject grades, which are Arabic, math, English and

computer. We will enter each subject grade of each

student into your program, and your program should be

able to sort these students according to the total

points they get in descending order. The skeleton code

should be like the following:

typedef struct students{

 char name[30];

 int arabic, math, english, computer;

 int total;

} Student;

void main()

{

 Student people[5];

...

}

Your program should have the following input & output.

Enter how many students> 4

__Student 1’s name> Ali

__ Arabic> 62

____Math> 99

__ English> 63

_ Computer> 87

__Student 2’s name> Ahmed

__Arabic> 98

____Math> 87

__ English> 84

_ Computer> 99

__Student 3’s name> Mona

__Arabic> 92

____Math> 60

__ English> 58

_Computer> 62

__Student 4’s name> Heba

__Arabic> 78

____Math> 72

__English> 88

_Computer> 76

=================================

Rank Arb Math Eng Com Total Name

1 98 87 84 99 368 Ahmed

2 78 72 88 76 314 Heba

3 62 99 63 87 311 Ali

4 92 60 58 62 272 Mona

 Introduction to Programming 125

Chapter 9

9 Pointers and Memory Allocation

Pointers are often thought to be the most difficult aspect of C. It's true

that many people have various problems with pointers and that many

programs founder on pointer-related bugs. Actually, though, many of

the problems are not so much with the pointers themselves but rather

with the memory they point to, and more specifically, when there isn't

any valid memory which they point to. As long as you're careful to

ensure that the pointers in your programs always point to valid

memory, pointers can be useful, powerful, and relatively trouble-free

tools.

A pointer is a variable that points at, or refers to, another variable.

That is, if we have a pointer variable of type “pointer to int”, it might

point to the int variable i, or to the third cell of the int array a. Given

a pointer variable, we can ask questions like, “What's the value of the

variable that this pointer points to?”

Why would we want to have a variable that refers to another variable?

Why not just use that other variable directly? The answer is that a level

of indirection can be very useful. Indirection is just another word for

the situation when one variable refers to another. In general pointers

can be used to:

 manipulate arrays more easily by moving pointers to them (or

to parts of them), instead of moving the arrays themselves

 Call by reference instead of call by value while calling

functions.

 return more than one value from a function

 communicate information about memory, as in the function

malloc() and the operator new, which returns the location of

free memory by using a pointer

 pointer notation compiles into faster, more efficient code

than, for example, array notation

 Chapter 9: Pointers and Memory Allocation 126

9.1 Basic Pointer Operations

The first things to do with pointers are to declare a pointer variable,

set it to point somewhere, and finally manipulate the value that it

points to. A simple pointer declaration looks like this:

 int *ip;

This declaration looks like our earlier declarations, with one obvious

difference: that asterisk. The asterisk means that ip, the variable

we're declaring, is not of type int, but rather of type pointer-to-int.

We may think of setting a pointer variable to point to another variable

as a two-step process:

1) Generate a pointer to that other variable,

2) Assign this new pointer to the pointer variable. We can say that a

pointer variable has a value, and that its value is “pointer to that

other variable (memory address)”. This will make more sense

when we see how to generate pointer values.

Pointers (that is, pointer values) are generated with the “address-of”

operator &, which we can also think of as the “pointer-to”

operator. We demonstrate this by declaring (and initializing) an int

variable i, and then setting ip to point to it:

 int i = 5;

 ip = &i;

The assignment expression ip = &i; contains both parts of the “two-

step process”: &i generates a pointer to i, and the assignment operator

assigns the new pointer to the variable ip. Now ip “points to” i as we

can illustrate with this picture:

i is a variable of type int, so the value in its box is a number, 5. ip is a

variable of type pointer-to-int, so the “value” in its box is an arrow

pointing at another box. Referring once again back to the “two-step

i: ip:

5

 Introduction to Programming 127

i: ip:

7

process” for setting a pointer variable: the & operator draws us the

arrowhead pointing at i's box, and the assignment operator =, with

the pointer variable ip on its left, anchors the other end of the arrow in

ip's box.

We discover the value pointed to by a pointer using the “contents-of”

operator, * placed in front of a pointer, the * operator accesses the

value pointed to by that pointer. In other words, if ip is a pointer, then

the expression *ip gives us whatever it is that's in the variable or

location pointed to by ip. For example, we could write something like

 printf("%d\n", *ip);

which would print 5, since ip points to i, and i is (at the moment) 5.

The contents-of operator * does not merely fetch values through

pointers; it can also set values through pointers. We can write

something like
 *ip = 7;

that means “set whatever ip points to to 7”. Again, the * tells us to go

to the location pointed to by ip, but this time, the location isn't the one

to fetch from--we're on the left-hand sign of an assignment operator,

so *ip tells us the location to store to. The result of the assignment *ip

= 7 is that i's value is changed to 7, and the picture changes to:

At this point, you may be wondering why we're going through this

hassle. If we wanted to set i to 7, why didn't we do it directly? We'll

begin to explore that next, but first let's notice the difference between

changing a pointer (that is, changing what variable it points to) and

changing the value at the location it points to. When we wrote *ip = 7,

we changed the value pointed to by ip, but if we declare another

variable j:

 int j = 3;

and write

 Chapter 9: Pointers and Memory Allocation 128

 ip = &j;

we've changed ip itself. The picture now looks like this:

We have to be careful when we say that a pointer assignment changes

“what the pointer points to.” Our earlier assignment
 *ip = 7;

changed the value pointed to by ip, but this more recent assignment

 ip = &j;

has changed what variable ip points to. If we again call:

 printf("%d\n", *ip);

this time it will print 3 (j’s value).

We can also assign pointer values to other pointer variables. If we

declare a second pointer variable:
 int *ip2;

then we can say
 ip2 = ip;

Now ip2 points where ip does; we've essentially made a “copy” of the

arrow:

Now, if we set ip to point back to i again:

 ip = &i;

i:
ip:

7

j:

3

i: ip:

7

j:

3

ip2:

 Introduction to Programming 129

the two arrows point to different places:

We can now see that the two assignments

 ip2 = ip;

and
 *ip2 = *ip;

do two very different things. The first would make ip2 again point to

where ip points (in other words, back to i again). The second would

store, at the location pointed to by ip2, a copy of the value pointed to

by ip; in other words (if ip and ip2 still point to i and j respectively) it

would set j to i's value (7).

It's important to keep very clear in your mind the

distinction between a pointer and what it points to. The

two are like oil and water; you can't mix them. You can't “set ip to 5''

by writing something like:
 ip = 5; /* WRONG */

5 is an integer, but ip is a pointer. You probably wanted to “set the

value pointed to by ip to 5”, that you express by writing
 *ip = 5;

Similarly, you can't “see what ip is” by writing
 printf("%d\n", ip); /* WRONG */

Again, ip is a pointer-to-int, but %d expects an int. To print what ip

points to, use
 printf("%d\n", *ip);

i: ip:

7

j:

3

ip2:

 Chapter 9: Pointers and Memory Allocation 130

Finally, a few more notes about pointer declarations. The * in a

pointer declaration is related to, but different from, the contents-of

operator *. After we declare a pointer variable:
 int *ip;

the expression

 ip = &i

sets what ip points to (that is, which location it points to), while the

expression
 *ip = 5

sets the value of the location pointed to by ip. On the other hand, if we

declare a pointer variable and include an initializer:
 int *ip3 = &i;

we're setting the initial value for ip3, which is where ip3 will point, so

that initial value is a pointer. (In other words, the * in the declaration

int *ip3 = &i; is not the contents-of operator, it's the indicator that

ip3 is a pointer.)

If you have a pointer declaration containing an initialization, and you

ever have occasion to break it up into a simple declaration and a

conventional assignment, do it like this:
 int *ip3;

 ip3 = &i;

Don't write
 int *ip3;

 *ip3 = &i;

or you'll be trying to mix oil and water again. Also, when we write
 int *ip;

although the asterisk affects ip's type, it goes with the identifier name

ip, not with the type int on the left. To declare two pointers at once,

the declaration looks like
 int *ip1, *ip2;

Some people write pointer declarations like this:
 int* ip;

This works for one pointer, because C essentially ignores whitespace.

But if you ever write
 int* ip1, ip2; /* PROBABLY WRONG */

 Introduction to Programming 131

it will declare one pointer-to-int ip1 and one plain int ip2, which is

probably not what you meant.

9.1.1 Pointers and Arrays: Pointer Arithmetic
Pointers do not have to point to single variables. They can also point at

the cells of an array. For example, we can write:

 int *ip;

 int a[10];

 ip = &a[3];

and we would end up with ip pointing at the fourth cell of the array a

(remember, arrays are 0-based, so a[0] is the first cell). We could

illustrate the situation like this:

We'd use this ip just like the one in the previous section: *ip gives us

what ip points to, which in this case will be the value in a[3].

Once we have a pointer pointing into an array, we can start doing

pointer arithmetic. Given that ip is a pointer to a[3], we can add 1

to ip:

 ip + 1

What does it mean to add one to a pointer? In C, it gives a pointer to

the cell one farther on, which in this case is a[4]. To make this clear,

let's assign this new pointer to another pointer variable:
 ip2 = ip + 1;

Now the picture looks like this:

ip:
a:

ip:
a:

ip2:

 Chapter 9: Pointers and Memory Allocation 132

If we now do
 *ip2 = 4;

we've set a[4] to 4. But it's not necessary to assign a new pointer

value to a pointer variable in order to use it; we could also compute a

new pointer value and use it immediately:
 *(ip + 1) = 5;

In this last example, we've changed a[4] again, setting it to 5. The

parentheses are needed because the unary “contents of” operator * has

higher precedence (i.e., binds more tightly than) the addition

operator. If we wrote *ip + 1, without the parentheses, we'd be

fetching the value pointed to by ip, and adding 1 to that value. The

expression *(ip + 1), on the other hand, accesses the value one past

the one pointed to by ip.

Given that we can add 1 to a pointer, it's not surprising that we can

add and subtract other numbers as well. If ip still points to a[3], then

 *(ip + 3) = 7;

sets a[6] to 7, and

 *(ip - 2) = 4;

sets a[1] to 4.

Up above, we added 1 to ip and assigned the new pointer to ip2, but

there's no reason we can't add one to a pointer, and change the same

pointer:
 ip = ip + 1;

Now ip points one past where it used to (to a[4], if we hadn't changed

it in the meantime). The shortcuts we learned in a previous chapter all

work for pointers, too: we could also increment a pointer using:
 ip += 1;

or
 ip++;

Of course, pointers are not limited to ints. It's quite common to use

pointers to other types, especially char. Here is the innards of the

mystrcmp function we saw in a previous chapter, rewritten to use

pointers. (mystrcmp, you may recall, compares two strings, character

by character.)

 Introduction to Programming 133

 char *p1 = &str1[0], *p2 = &str2[0];

 while(1){

 if(*p1 != *p2)

 return *p1 - *p2;

 if(*p1 == '\0' && *p2 == '\0')

 return 0;

 p1++;

 p2++;

}

The auto-increment operator ++ makes it easy to do two things at

once. We've seen idioms like a[i++] which accesses a[i] and

simultaneously increments i, leaving it referencing the next cell of the

array a. We can do the same thing with pointers: an expression like

*ip++ lets us access what ip points to, while simultaneously

incrementing ip so that it points to the next element. The pre-

increment form works, too: *++ip increments ip, then accesses what it

points to. Similarly, we can use notations like *ip-- and *--ip.

One question that comes up is whether the expression *p++

increments p or what it points to. The answer is that it increments p.

To increment what p points to, you can use (*p)++.

When you're doing pointer arithmetic, you have to

remember how big the array the pointer points into is, so

that you don't ever point outside it. If the array a has 10 elements, you

can't access a[50] or a[-1] or even a[10] (remember, the valid index

for a 10-element array run from 0 to 9). Similarly, if a has 10 elements

and ip points to a[3], you can't compute or access ip + 10 or ip - 5.

9.1.2 Pointer Subtraction and Comparison

As we've seen, you can add an integer to a pointer to get a new pointer,

pointing somewhere beyond the original (as long as it's in the same

array). For example, you might write:

 ip2 = ip1 + 3;

Applying a little algebra, you might wonder whether

 Chapter 9: Pointers and Memory Allocation 134

 ip2 - ip1 = 3

and the answer is, yes. When you subtract two pointers, as long as they

point into the same array, the result is the number of elements

separating them. You can also ask (again, as long as they point into the

same array) whether one pointer is greater or less than another: one

pointer is “greater than” another if it points beyond where the other

one points. You can also compare pointers for equality and inequality:

two pointers are equal if they point to the same variable or to the same

cell in an array, and are (obviously) unequal if they don't. (When

testing for equality or inequality, the two pointers do not have to point

into the same array)

One common use of pointer comparisons is when copying arrays using

pointers. Here is a code fragment which copies 10 elements from

array1 to array2, using pointers. It uses an end pointer, ep, to keep

track of when it should stop copying.

 int array1[10], array2[10];

 int *ip1, *ip2 = &array2[0];

 int *ep = &array1[10];

 for(ip1 = &array1[0]; ip1 < ep; ip1++)

 *ip2++ = *ip1;

As we mentioned, there is no element array1[10], but it is legal to

compute a pointer to this (nonexistent) element, as long as we only

use it in pointer comparisons like this (that is, as long as we never try

to fetch or store the value that it points to.)

9.1.3 Null Pointers

We said that the value of a pointer variable is a pointer to some other

variable. There is one other value a pointer may have: it may be set to

a null pointer. A null pointer is a special pointer value that is known

not to point anywhere. What this means that no other valid pointer, to

any other variable or array cell or anything else, will ever compare

equal to a null pointer.

 Introduction to Programming 135

The most straightforward way to “get” a null pointer in your program

is by using the predefined constant NULL, which is defined for you by

several standard header files, including <stdio.h>, <stdlib.h>, and

<string.h>. To initialize a pointer to a null pointer, you might use

code like

 #include <stdio.h>

 int *ip = NULL;

and to test it for a null pointer before inspecting the value pointed to

you might use code like
 if(ip != NULL)

 printf("%d\n", *ip);

It is also possible to refer to the null pointer by using a constant 0, and

you will see some code that sets null pointers by simply doing

 int *ip = 0;

Furthermore, since the definition of “true” in C is a value that is not

equal to 0, you will see code that tests for non-null pointers with

abbreviated code like

 if(ip)

 printf("%d\n", *ip);

This has the same meaning as our previous example; if(ip) is

equivalent to if(ip != 0) and to if(ip != NULL). All of these uses are

legal, and although I recommend that you use the constant NULL for

clarity, you will come across the other forms, so you should be able to

recognize them.

You can use a null pointer as a placeholder to remind yourself (or,

more importantly, to help your program remember) that a pointer

variable does not point anywhere at the moment and that you should

not use the “contents of” operator on it (that is, you should not try to

inspect what it points to, since it doesn't point to anything). A function

 Chapter 9: Pointers and Memory Allocation 136

that returns pointer values can return a null pointer when it is unable

to perform its task.

In general, C does not initialize pointers to null for you, and it never

tests pointers to see if they are null before using them. If one of the

pointers in your programs points somewhere some of the time but not

all of the time, an excellent convention to use is to set it to a null

pointer when it doesn't point anywhere valid, and to test to see if it's a

null pointer before using it. But you must use explicit code to set it to

NULL, and to test it against NULL.

9.2 Pointers and Passing Arguments
Functions usually return only one value and when arguments are

passed by value, the called function cannot alter the values passed

and have those changes reflected in the calling function. Pointers

allow the programmer to "return" more than one value by allowing the

arguments to be passed by reference which allows the function to

alter the values pointed to and thus "return" more than one value from

a function.

To explain the concept of calling by reference in C, we consider the

program shown in Listing ‎9-1 that tries to swap the value of two

variables.

Listing ‎9-1: Wrong Swap Program

1. #include <stdio.h>

2. void swap(int,int);

3. int main(){

4. int x = 4, y = 10;

5. swap(x,y);

6. printf("X=%d Y=%d",x,y);

7. return 0;

8. }

9. void swap(int a,int b){

10. int temp;

11. temp = a;

12. a = b;

13. b = temp;

14. }

 Introduction to Programming 137

The result of running the above example would be:
 X=4 Y=10

The result prints the original values stored in x and y. The variables a,

b, and temp are local to swap() and their values have no effect on the

original variables.

As presented in Listing ‎9-2, with the use of pointers and passing by

reference, the function can affect the original variables and thus

perform the required function and swap the values of the two

variables.

Listing ‎9-2: Correct Swap Program

The result of running the above example would be:
 X=10 Y=4

The values have been exchanged by the function swap(). Within the

main() function the & operator causes the address (reference) of

arguments x and y to be passed in the call to swap(). In the swap()

function header, the addresses being passed from the calling function

are received in pointer type variables (int *a, int *b). Within the

swap() function body, the * operator is used to retrieve values held at

1. #include <stdio.h>

2. void swap(int *, int *);

3. int main(){

4. int x = 4, y = 10;

5. swap(&x, &y);

6. printf("X=%d Y=%d",x,y);

7. return 0;

8. }

9. void swap(int *a, int *b){

10. int temp;

11. temp = *a;

12. *a = *b;

13. *b = temp;

14. }

 Chapter 9: Pointers and Memory Allocation 138

the addresses that were passed. When, the values of pointers are

changed, the values in memory location also changed correspondingly.

Hence, change made to *a and *b was reflected in x and y in main

function. This technique is known as call by reference in C

programming.

9.3 Memory Allocation

Another very important usage of pointers is dynamic memory

allocation. In this section you will meet the malloc, C’s dynamic

memory allocation function. You have to be careful while dealing with

dynamic memory allocation. malloc operates at a pretty “low level”;

you will often find yourself having to do a certain amount of work to

manage the memory it gives you. If you don't keep accurate track of

the memory which malloc has given you, and the pointers of yours

which point to it, it's all too easy to accidentally use a pointer which

points “nowhere”, with generally unpleasant results. (The basic

problem is that if you assign a value to the location pointed to by a

pointer:
 *p = 0;

and if the pointer p points “somewhere” that may be in use by some

other part of your program, or even worse, if the operating system has

not protected itself from you and “somewhere” is in fact in use by the

operating system, things could get ugly.

9.3.1 Allocating Memory with malloc

A problem with many simple programs is that they tend to use fixed-

size arrays that may or may not be big enough. We have an array of

100 ints for the numbers which the user enters and wishes to find the

average of--what if the user enters 101 numbers? We have an array of

100 chars which we pass to getline to receive the user's input--what if

the user types a line of 200 characters? If we're lucky, the relevant

parts of the program check how much of an array they've used, and

print an error message or otherwise gracefully abort before

overflowing the array. If we're not so lucky, a program may sail off the

end of an array, overwriting other data and behaving quite badly. In

 Introduction to Programming 139

either case, the user doesn't get his job done. How can we avoid the

restrictions of fixed-size arrays?

The answers all involve the standard library function malloc. Very

simply, malloc returns a pointer to n bytes of memory which we

can do anything we want to with. If we didn't want to read a line of

input into a fixed-size array, we could use malloc, instead. Here's the

first step:

 #include <stdlib.h>

 char *line;

 int linelen = 100;

 line = malloc(linelen);

 /* incomplete -- malloc's return value not checked */

 getline(line, linelen);

malloc is declared in <stdlib.h>, so we #include that header in any

program that calls malloc. A “byte” in C is, by definition, an amount of

storage suitable for storing one character, so the above invocation of

malloc gives us exactly as many chars as we ask for. We could

illustrate the resulting pointer like this:

The 100 bytes of memory (not all of which are shown) pointed to by

line are those allocated by malloc. They are brand-new memory,

conceptually a bit different from the memory which the compiler

arranges to have allocated automatically for our conventional

variables. The 100 boxes in the figure don't have a name next to them,

because they're not storage for a variable we've declared.

As a second example, we might have occasion to allocate a piece of

memory, and to copy a string into it with strcpy:

line: ..

 Chapter 9: Pointers and Memory Allocation 140

 char *p = malloc(15);

 /* incomplete -- malloc's return value not checked */

 strcpy(p, "Hello, world!");

When copying strings, remember that all strings have a terminating \0

character. If you use strlen to count the characters in a string for you,

that count will not include the trailing \0, so you must add one before

calling malloc:

 char *somestring, *copy;

...

copy = malloc(strlen(somestring) + 1); /* +1 for \0 */

/* incomplete -- malloc's return value not checked */

strcpy(copy, somestring);

What if we're not allocating characters, but integers? If we

want to allocate 100 ints, how many bytes is that? If we

know how big ints are on our machine (i.e. depending on whether

we're using a 16- or 32-bit machine) we could try to compute it

ourselves, but it's much safer and more portable to let C compute it for

us. C has a sizeof operator, which computes the size, in bytes, of a

variable or type. It's just what we need when calling malloc. To

allocate space for 100 ints, we could call:

 int *ip = malloc(100 * sizeof(int));

The use of the sizeof operator tends to look like a function call, but

it's really an operator, and it does its work at compile time. Since we

can use array indexing syntax on pointers, we can treat a pointer

variable after a call to malloc almost exactly as if it were an array. In

particular, after the above call to malloc initializes ip to point at

storage for 100 ints, we can access ip[0], ip[1], ... up to ip[99].

This way, we can get the effect of an array even if we don't know until

run time how big the “array” should be.

Our examples so far have all had a significant omission: they have not

checked malloc's return value. Obviously, no real computer has an

infinite amount of memory available, so there is no guarantee that

malloc will be able to give us as much memory as we ask for. If we call

 Introduction to Programming 141

malloc(100000000), or if we call malloc(10) 10,000,000 times, we're

probably going to run out of memory.

When malloc is unable to allocate the requested memory, it returns a

null pointer. A null pointer, remember, points definitively nowhere.

It's a “not a pointer” marker; it's not a pointer you can use. (As we

said before, a null pointer can be used as a failure return from a

function that returns pointers, and malloc is a perfect example.)

Therefore, whenever you call malloc, it's vital to check the returned

pointer before using it! If you call malloc, and it returns a null pointer,

and you go off and use that null pointer as if it pointed somewhere,

your program probably won't last long. Instead, a program should

immediately check for a null pointer, and if it receives one, it should at

the very least print an error message and exit, or perhaps figure out

some way of proceeding without the memory it asked for. But it

cannot go on to use the null pointer it got back from malloc in any

way, because that null pointer by definition points nowhere.

A call to malloc, with an error check, typically looks something like

this:

 int *ip = malloc(100 * sizeof(int));

 if(ip == NULL){

 printf("out of memory\n");

 return -1; //or exit(-1)

 }

After printing the error message, this code should return to its caller,

or exit from the program entirely; it cannot proceed with the code that

would have used ip. As you notice here, the return statement use the (-

1) value to send a message the operating system that this program

termination is abnormal one (due to an internal error).

Of course, in our examples so far, we've still limited ourselves to “fixed

size” regions of memory, because we've been calling malloc with fixed

arguments like 10 or 100. However, since the sizes are now values

which can in principle be determined at run-time, we've at least

moved beyond having to recompile the program (with a bigger array)

 Chapter 9: Pointers and Memory Allocation 142

to accommodate longer lines, and with a little more work, we could

arrange that the “arrays” automatically grew to be as large as required.

9.3.2 Freeing Memory
Memory allocated with malloc lasts as long as you want it to. It does

not automatically disappear when a function returns, as automatic-

duration variables do, but it does not have to remain for the entire

duration of your program, either. Just as you can use malloc to control

exactly when and how much memory you allocate, you can also

control exactly when you de-allocate it.

In fact, many programs use memory on a transient basis. They allocate

some memory, use it for a while, but then reach a point where they

don't need that particular piece any more. Because memory is not

inexhaustible, it's a good idea to de-allocate (that is, release or free)

memory you're no longer using.

Dynamically allocated memory is de-allocated with the free function.

If p contains a pointer previously returned by malloc, you can call:

 free(p);

which will “give the memory back” to the stock of memory (sometimes

called the “pool”) from which malloc requests are satisfied. Calling

free is sort of the ultimate in recycling: it costs you almost nothing,

and the memory you give back is immediately usable by other parts of

your program or other programs. Freeing unused memory is a good

idea, but it's not mandatory. When your program exits, any memory

which it has allocated but not freed should be automatically released.

Naturally, once you've freed some memory you must remember not to

use it any more. After calling:
 free(p);

it is probably the case that p still points at the same memory. However,

since we've given it back, it's now not available, and a later call to

malloc might give that memory to some other part of your program. If

the variable p is a global variable or will otherwise stick around for a

 Introduction to Programming 143

while, one good way to record the fact that it's not to be used any more

would be to set it to a null pointer:
 free(p);

 p = NULL;

Now we don't even have the pointer to the freed memory any more,

and (as long as we check to see that p is non-NULL before using it), we

won't misuse any memory via the pointer p.

When thinking about malloc, free, and dynamically-allocated

memory in general, remember again the distinction between a

pointer and what it points to. If you call malloc to allocate some

memory, and store the pointer which malloc gives you in a local

pointer variable, what happens when the function containing the local

pointer variable returns? If the local pointer variable has automatic

duration (which is the default, unless the variable is declared static), it

will disappear when the function returns. But for the pointer variable

to disappear says nothing about the memory pointed to! That memory

still exists and, as far as malloc and free are concerned, is still

allocated. The only thing that has disappeared is the pointer variable

you had which pointed at the allocated memory. Furthermore, if it

contained the only copy of the pointer you had, once it disappears,

you'll have no way of freeing the memory, and no way of using it,

either. Using memory and freeing memory both require that you have

at least one pointer to the memory!

9.3.3 Reallocating Memory Blocks
Sometimes you're not sure at first how much memory you'll need. For

example, if you need to store a series of items you read from the user,

and if the only way to know how many there are is to read them until

the user types some “end” signal, you'll have no way of knowing, as

you begin reading and storing the first few, how many you'll have seen

by the time you do see that “end” marker. You might want to allocate

room for, say, 100 items, and if the user enters a 101st item before

entering the “end” marker, you might wish for a way to say “uh,

malloc, remember those 100 items I asked for? Could I change my

mind and have 200 instead?''

In fact, you can do exactly this, with the realloc function. You hand

realloc an old pointer (such as you received from an initial call to

 Chapter 9: Pointers and Memory Allocation 144

malloc) and a new size, and realloc does what it can to give you a

chunk of memory big enough to hold the new size. For example, if we

wanted the ip variable from an earlier example to point at 200 ints

instead of 100, we could try calling

 ip = realloc(ip, 200 * sizeof(int));

You and realloc have to worry about the case where realloc can't

make the old block of memory bigger but rather has to relocate it

elsewhere in order to find enough contiguous space for the new

requested size. realloc does this by returning a new pointer. If

realloc was able to make the old block of memory bigger, it returns

the same pointer. If realloc has to go elsewhere to get enough

contiguous memory, it returns a pointer to the new memory, after

copying your old data there. In this case, after it makes the copy,

it frees the old block automatically. Finally, if realloc can't find

enough memory to satisfy the new request at all, it returns a null

pointer. Therefore, you usually don't want to overwrite your old

pointer with realloc's return value until you've tested it to make sure

it's not a null pointer. You might use code like this:
 int *newp;

 newp = realloc(ip, 200 * sizeof(int));

 if(newp != NULL)

 ip = newp;

 else{

 printf("out of memory\n");

 /* exit or return */

 /* but ip still points at 100 ints */

 }

If realloc returns something other than a null pointer, it succeeded,

and we set ip to what it returned. (We've either set ip to what it used

to be or to a new pointer, but in either case, it points to where our data

is now.) If realloc returns a null pointer, however, we hang on to our

old pointer in ip which still points at our original 100 values.

Putting this all together, Listing ‎9-3 introduces a piece of code that

reads lines of text from the user, treats each line as an integer by

calling atoi, and stores each integer in a dynamically-allocated array:

 Introduction to Programming 145

We use two different variables to keep track of the array pointed to by

ip. nalloc is how many elements we've allocated, and nitems is how

many of them are in use. Whenever we're about to store another item

in the array, if nitems >= nalloc, the old array is full, and it's time to

call realloc to make it bigger.

Listing ‎9-3: Read Lines from a User

1. #define MAXLINE 100

2. char line[MAXLINE];

3. int *ip;

4. int nalloc, nitems;

5. nalloc = 100;

6. ip = malloc(nalloc * sizeof(int));

7. if(ip == NULL){

8. printf("out of memory\n");

9. exit(1);

10. }

11. nitems = 0;

12. while(getline(line, MAXLINE) != EOF){

13. if(nitems >= nalloc){ /* increase allocation */

14. int *newp;

15. nalloc += 100;

16. newp = realloc(ip, nalloc * sizeof(int));

17. if(newp == NULL){

18. printf("out of memory\n");

19. exit(1);

20. }

21. ip = newp;

22. }

23. ip[nitems++] = atoi(line);

24. }

 Chapter 9: Pointers and Memory Allocation 146

9.3.4 Dynamic Memory Allocation in C++
Management of dynamic memory in C++ is quite similar to C in most

respects. Although the library functions are likely to be available, C++

has two additional operators – new and delete – which enable code to

be written more clearly, succinctly and flexibly, with less likelihood of

errors. The new operator can be used in three ways:

 p_var = new typename;
 p_var = new type(initializer);
 p_array = new type [size];

In the first two cases, space for a single object is allocated; the second

one includes initialization. The third case is the mechanism for

allocating space for an array of objects.

The delete operator can be invoked in two ways:

 delete p_var;
 delete[] p_array;

The first is for a single object; the second de-allocates the space used

by an array. It is very important to use the correct de-allocator in each

case.

There is no operator that provides the functionality of the C realloc()

function.

Here is the code to dynamically allocate an array and initialize the

fourth element:

 int* pointer;
 pointer = new int[10];
 pointer[3] = 99;

Using the array access notation is natural. De-allocation is performed

thus:

 delete[] pointer;
 pointer = NULL;

Again, assigning NULL to the pointer after de-allocation is just good

programming practice.

 Introduction to Programming 147

9.3.5 Pointer Safety

At the beginning of the chapter, we said that the hard thing about

pointers is not so much manipulating them as ensuring that the

memory they point to is valid. When a pointer doesn't point where you

think it does, if you inadvertently access or modify the memory it

points to, you can damage other parts of your program or (in some

cases) other programs or the operating system itself!

When we use pointers to simple variables, there's not much that can

go wrong. When we use pointers into arrays, and begin moving the

pointers around, we have to be more careful, to ensure that the roving

pointers always stay within the bounds of the array(s). When we begin

passing pointers to functions, and especially when we begin returning

them from functions we have to be more careful still, because the code

using the pointer may be far removed from the code which owns or

allocated the memory.

One particular problem concerns functions that return pointers.

Where is the memory to which the returned pointer points? Is it still

around by the time the function returns? One thing a function must

not do is to return a pointer to one of its own, local, automatic-

duration arrays. Remember that automatic-duration variables (which

includes all non-static local variables), including automatic-duration

arrays, are de-allocated and disappear when the function returns. If a

function returns a pointer to a local array, that pointer will be invalid

by the time the caller tries to use it.

Finally, when we're doing dynamic memory allocation with malloc,

realloc, and free, we have to be most careful of all. Dynamic

allocation gives us a lot more flexibility in how our programs use

memory, although with that flexibility comes the responsibility that we

manage dynamically allocated memory carefully. The possibilities for

misdirected pointers and associated mayhem are greatest in programs

that make heavy use of dynamic memory allocation. You can reduce

these possibilities by designing your program in such a way that it's

 Chapter 9: Pointers and Memory Allocation 148

easy to ensure that pointers are used correctly and that memory is

always allocated and de-allocated correctly.

9.4 Exercises
1) In which header file is the NULL macro defined?

a. stdio.h

b. stddef.h

c. stdio.h and stddef.h

d. math.h

2) Which pair of the following statements are equivalent?

 a. *value[1];

 *(value + 1);

 b. **value;

 *value;

 c. *value[2];

 (*value++)++;

 d. *value;

 &value;

3) What is the output of this C code?

 #include <stdio.h>

 void foo(int*);

 int main()

 {

 int i = 10, *p = &i;

 foo(p++);

 }

 void foo(int *p)

 {

 printf("%d\n", *p);

 }

 a. 10

 b. Some garbage value

 c. Compile time error

 d. segmentation fault.

4) If we say
 int i = 5;

 int *ip = &i;

 then what is ip? What is its value?

 Introduction to Programming 149

5) If ip is a pointer to an integer, what does ip++ mean?
What does

 *ip++ = 0;

 do?

6) How much memory does the call malloc(10) allocate?
What if you want enough memory for 10 ints?

7) If p is a pointer, what does p[i] mean?

8) Run the following program, show the output and answer
the questions.

#include <stdio.h>

void main(void){

 char a, *pa; // Statement 1

 pa = &a; // Statement 2

 printf("pa = &a --> pa = %p \n", pa);

 pa = pa + 1; // Statement 3

 printf("pa = pa + 1 --> pa = %p \n", pa);

 pa = pa + 3; // Statement 4

 printf("pa = pa + 3 --> pa = %p \n", pa);

 pa = pa - 1; // Statement 5

 printf("pa = pa - 1 --> pa = %p \n", pa);

}

a. Can we add an integer to a variable such as pa that
stores addresses?

b. Can we subtract integers from a variable such as pa
that store addresses?

c. Can we multiply integers to a variable such as pa
that stores addresses as shown below? What error do

you get?

pa = pa * 3;

d. What was the first address stored in pa in
Statement 3?

e. After 1 was added to pa in Statement 3, what
address was stored in pa?

f. After 3 was added to pa in Statement 4, what
address was stored in pa?

g. After 1 was subtracted from pa in Statement 5, what
address was stored in pa?

h. Now change only Statement 1 to the following
statement:

 int a, *pa;

 Chapter 9: Pointers and Memory Allocation 150

i. Rerun the program and answer the same questions,
namely:

a) What was the first address stored in pa in
Statement 3?

b) After 1 was added to pa in Statement 3,
what address was stored in pa?

c) After 3 was added to pa in Statement 4,
what address was stored in pa?

d) After 1 was subtracted from pa in
Statement 5, what address was stored in

pa?

j. Adding 1 to a variable that holds character
addresses adds what number to the address?

k. Adding 1 to a variable that holds integer addresses
adds what number to that address?

l. Since the answer to question j is 1, characters are
stored in memory using only 1 byte. A byte is a

unit of measure of memory. How many bytes are used

to store integers on your computer? Take note that

the number of bytes used to store characters,

integers and floats varies depending on the type of

computer or platform (e.g. 32 bits, 64 bits system

etc.) and/or the target platform of your program.

You can use the sizeof() function to check the size

of variables as shown in the following program

example.

#include <stdio.h>

void main(void)

{

char a = 'W';

int b = 100;

float c = 1.234;

double d = 100000.34;

printf("Size of a = %d byte(s).\n", sizeof(a));

printf("Size of b = %d byte(s).\n", sizeof(b));

printf("Size of c = %d byte(s).\n", sizeof(c));

printf("Size of d = %d byte(s).\n", sizeof(d));

}

9) Run the following program, show the output and
answer the questions.

#include <stdio.h>

void main(void)

{

float a[4], *b, c;

b = &c; // Statement 1

printf("b = %p\n", b);

}

 Introduction to Programming 151

a. Did Statement 1 execute or did it give an
error?

b. Change Statement 1 to the following:
 a = &c;

Try running it. Did it give an error? What was that

error?

As a conclusion, both a and b store addresses, that

is they are both pointers. However, the address

stored in b (a pointer) can be changed, it is a

pointer variable. The address of a (an array)

cannot be changed, it is a pointer constant.

10) For the following questions, use the declaration of
variables shown below. You can try building a

simple program using the given specification in

order to answer the questions.

int i, j[5] = {4, 5, 6, 7, 8}, *ptr1 = &j[0],

*ptr3;

float x[5] = {4.0, 5.0, 6.0, 7.0, 8.0}, *ptr2;

For each statement below, specify which are valid

and which aren’t.

a. ptr1 = ptr1 + 3;

b. j = j + 1;

c. ptr1 = j + 1;

d. ptr2 = ptr1;

e. ptr1 = j[1];

f. ptr1 = 2;

g. i = ptr1;

h. ptr3 = ptr1;

i. i = j[2];

j. ptr2 = x;

k. ptr1 = ptr1[2];

l. x = &ptr2[2];

m. j = ptr1 + 3;

n. ptr1 = &j[1];

 152

APPENDIX I: Compilation of a C Program

 153

This Appendix helps you to get to the point where you can compile,

link, run, and debug C/C++ programs. This depends on what

operating system you have, so we'll see how to get a C/C++ project up

and running under Windows, and Linux.

Compiling C++ Programs under Windows

This section assumes that you are using Microsoft Visual Studio 2010

(VS2010). If you don’t have it, alternatively, you can download Visual

C++ 2010 or 2012 Express Edition, a free version of Microsoft's

development environment sporting a fully-functional C++ compiler.

The express edition of Visual C++ lacks support for advanced

Windows development, but is otherwise a perfectly fine C++ compiler.

You can get Visual C++ Express Edition from:

 www.microsoft.com/visualstudio/eng/products/

VS2010 organizes C++ code into “projects,” collections of source files

that will be built into a program. The first step in creating a C++

program is to get an empty C++ project up and running, then to

populate it with the necessary files. To begin, open VS2010 and from

the File menu choose New > Project.... You should see a window as

shown in Figure ‎10-1.

As you can see, VS2010 has template support for all sorts of different

projects, most of which are for Microsoft-specific applications such as

dynamic-link libraries (DLLs) or ActiveX controls. We're not

particularly interested in most of these choices - we just want a simple

C++ program! To create one, find and choose Win32 Console

Application. Give your project an appropriate name, and then click

OK. You should now see a window shown in Figure ‎0 2, which will ask

you to configure project settings:

http://www.microsoft.com/visualstudio/eng/products/
http://www.microsoft.com/visualstudio/eng/products/

 154

Figure ‎10-1: Visual Studio New Project

Figure ‎10-2: Win32 Application Wizard

At this point, hit Next >, and you’ll be presented with the screen

shown in Figure ‎10-3. Keep all of the default settings listed here, but

make sure that you check the box marked Empty Project. Otherwise

VS2010 will give you a project with all sorts of Microsoft-specific

features built into it. Once you've checked that box, click Finish and

you'll have a fully functional C++ project.

Now, it's time to create and add some source files to this project so

that you can enter C++ code. To do this, go to Project > Add New

 155

Item... (Or press CTRL+SHIFT+A). You'll be presented with the

dialog box presented in Figure ‎10-4.

Figure ‎10-3: Win32 Application Settings

Choose C++ File (.cpp) and enter a name for it inside the Name field.

VS2010 automatically appends .cpp to the end of the filename, so

don't worry about manually entering the extension. Once you're ready,

click Add and you should have your source file ready to go. Any C++

code you enter in here will be considered by the compiler and built

into your final application.

Once you've written the source code, you can compile and run your

programs by pressing F5, choosing Debug> Start Debugging, or

clicking the green “play” icon. By default VS2010 will close the console

window after your program finishes running, and if you want the

window to persist after the program finishes executing you can run the

program without debugging by pressing CTRL+F5 or choosing Debug

> Start Without Debugging. You should be all set to go!

 156

Figure ‎10-4: Add New Item Dialog Box

Compiling C++ Programs under Linux

For those of you using a Linux-based operating system, you're in luck -

Linux is extremely developer-friendly and all of the tools you'll need

are at your disposal from the command-line.

Unlike the Windows, when compiling code in Linux you won't need to

set up a development environment using Visual Studio. Instead, you'll

just set up a directory where you'll put and edit your C++ files, then

will directly invoke the GNU C++ Compiler (g++) from the command-

line.

If you're using Linux I'll assume that you're already familiar with

simple commands like mkdir and chdir and that you know how to edit

and save a text document. When writing C++ source code, you'll

probably want to save header files with the .h extension and C++ files

with the .cpp, .C, or .c++ extension.

 157

To be able to compile and run C and C++ programs, you will need first

to install the build-essential package by typing the following command

in the terminal (for Ubuntu distribution):

sudo apt-get install build-essential

This will install the necessary C/C++ development libraries for your

Ubuntu Linux system to create C/C++ programs.

To compile your source code, you can execute g++ from the command

line by typing g++ and then a list of the files you want to compile. For

example, to compile myfile.cc and myotherfile.cc, you'd type:

g++ myfile.cc myotherfile.cc

By default, this produces a file named a.out, which you can execute by

entering ./a.out. If you want to change the name of the program to

something else, you can use g++'s -o switch, which produces an output

file of a different name. For example, to create an executable called

myprogram from the file myfile.cc, you could write

g++ myfile.cc -o myprogram

g++ has a whole host of other switches (such as -c to compile but not

link a file), so be sure to consult the man pages for more info.

It can get tedious writing out the commands to compile every single

file in a project to form a finished ex¬ecutable, so most Linux

developers use makefiles, scripts which allow you to compile an entire

project by typing the make command. A full tour of makefiles is far

beyond the scope of an introductory C++ text, but fortunately there

are many good online tutorials on how to construct a makefile. The full

manual for make is available online at

http://www.gnu.org/software/make/manual/make.html.

http://www.gnu.org/software/make/manual/make.html

 158

References

[1] Brian W. Kernighan , and Dennis M. Ritchie, “C Programming Language”, 2nd

Edition, 1988.

[2] K. N. King , “C Programming: A Modern Approach”, 1996.

[3] Dan Gookin, “C For Dummies”, 1997.

[4] Online C course, Steve Summit:

http://www.eskimo.com/~scs/cclass/cclass.html

[5] Online C/C++ course, Paul Roberts, Cambridge University:

http://www-control.eng.cam.ac.uk/~pcr20/C_Manual/booktoc.html

[6] Online C Resources:

http://www.tutorialspoint.com/cprogramming/

[7] MIT Open Courseware: Introduction to C++:

 http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-096-

introduction-to-c-january-iap-2011/

[8] C Lab Worksheets

http://www.tenouk.com/clabworksheet/clabworksheet.html

http://www.tenouk.com/clabworksheet/clabworksheet.html

